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Abstract

Inference in a high-dimensional situation may involve regularization of a certain form to treat overpa-

rameterization, imposing challenges to inference. The common practice of inference uses either a regularized

model, as in inference after model selection, or bias-reduction known as “debias”. While the first ignores

statistical uncertainty inherent in regularization, the second reduces the bias inbred in regularization at

the expense of increased variance. In this paper, we propose a constrained maximum likelihood method for

hypothesis testing involving unspecific nuisance parameters, with a focus of alleviating the impact of regular-

ization on inference. Particularly, for general composite hypotheses, we unregularize hypothesized parameters

whereas regularizing nuisance parameters through a L0-constraint controlling the degree of sparseness. This

approach is analogous to semiparametric likelihood inference in a high-dimensional situation. On this ground,

for the Gaussian graphical model and linear regression, we derive conditions under which the asymptotic dis-

tribution of the constrained likelihood ratio is established, permitting parameter dimension increasing with

the sample size. Interestingly, the corresponding limiting distribution is the chi-square or normal, depending

on if the co-dimension of a test is finite or increases with the sample size, leading to asymptotic similar

tests. This goes beyond the classical Wilks phenomenon. Numerically, we demonstrate that the proposed

method performs well against it competitors in various scenarios. Finally, we apply the proposed method to

infer linkages in brain network analysis based on MRI data, to contrast Alzheimer’s disease patients against

healthy subjects.
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1 Introduction

High-dimensional analysis has become increasingly important in modern statistics, where a

model’s size may greatly exceed the sample size. For instance, in studying the brain ac-

tivity, a brain network is often examined, which consists of structurally and functionally

interconnected regions at many scales. At the macroscopic level, networks can be studied

noninvasively in healthy and disease subjects with functional MRI (fMRI) and other modali-

ties such as MEG and EEG. In such a situation, inferring the structure of a network becomes

critically important, which is one kind of high-dimensional inference. Yet, high-dimensional

inference remains largely under-studied. In this paper, we develop a full likelihood inferential

method, particularly for a Gaussian graphical model and high-dimensional linear regression.

In the literature, a great deal of e↵ort has been devoted to estimation. For the linear

model, many methods focus on estimation with sparsity-inducing convex and nonconvex reg-

ularization such as Lasso, SCAD, MCP, and TLP [23, 7, 27, 21], among others. For the Gaus-

sian graphical model, methods include the regularized likelihood approach [19, 8, 26, 6, 21]

and the nodewise regression approach [16], and their extensions such as conditional Gaussian

graphical [13, 25] and multiple Gaussian graphical models [31, 14]. Despite progress, there

is a paucity of inferential methods for high-dimensional models, although some have been

recently proposed in [28, 24, 12, 11], where confidence intervals are constructed based on

a bias-reduction method called “debias” [28]. One potential issue of this kind of approach

is not asymptotically similar with its null distribution depending on unknown nuisance pa-

rameters to be estimated, and most critically the variance is likely to increase after debias,

resulting in an increased length of a confidence interval.

In this article, we propose a maximum likelihood method subject to certain constraints for

hypothesis testing involving unspecific nuisance parameters, referred to as the constrained

maximum likelihood ratio (CMLR) test, which regularizes the degree of sparsity of un-
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hypothesized parameters in a high-dimensional model, whereas hypothesized parameters are

not regularized. This is an analogy of semiparametric inference with respect to the paramet-

ric component, which enables to alleviate the inherited bias problem due to regularization.

For computation, we employ a surrogate of the L0-function, a truncated L1-function, for the

constraints. On this ground, we develop the CMLR test, which is asymptotically similar

with its null distribution independent of unspecific nuisance parameters. Moreover, we de-

rive the asymptotic distributions of the test in the presence of growing parameter dimensions

for the Gaussian graphical model and linear model. Most importantly, the corresponding

distribution for the CMLR test statistic converges to the chi-square distribution when the

co-dimension, or the di↵erence in dimensionality between the full and null spaces, is finite,

and converges to normal (after proper centering and scaling) when the co-dimension tends

to infinity. This occurs in a situation roughly when (|A0|+|B|) log p
n1/2 ! 0 and

p
|B|(|A0|+|B|)

n
! 0

respectively in the Gaussian graphical model and linear regression, where |B| and |A0| are

the numbers of the hypothesized parameters and the nonzero unhypothesized parameters.

Such a critical assumption is in contrast to a requirement of log p
n

! 0 for sparse feature se-

lection [22], which has been used in [18] for the maximum likelihood estimation in a di↵erent

context. Empirically, the asymptotic approximation becomes inadequate when departure

from this assumption occurs in a less sparse situation. To our knowledge, our result is the

first of this kind, providing a multivariate likelihood test in the presence of high-dimensional

nuisance parameters. This is in contrast to a univariate debias test [28, 24, 12, 11]. When

specializing the CMLR test to a single parameter in the Gaussian graphical model and linear

regression, we show that it has asymptotic power that is no less than that of the debias test,

c.f., Theorem 3. This is anticipated since the debias test does not capture all the informa-

tion contained in the likelihood, whereas the full likelihood takes into account component

to component dependencies. This aspect is illustrated by our second numerical example in

which a null hypothesis involves a row (column) of o↵diagonals of the precision matrix. Of
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course, a multivariate likelihood test as ours may require stronger conditions than a uni-

variate non-likelihood test, which is analogous to the classical situation of the maximum

likelihood versus the method of moments in inference. Throughout this article, we shall fo-

cus our attention to the CMLR test as opposed to the corresponding Wald test based on the

constrained maximum likelihood, which not asymptotically similar, given that it is rather

challenging to invert a high-dimensional Fisher information matrix.

Computationally, we relax the nonconvex minimization using an L0-surrogate function

by solving a sequence of convex relaxations as in [21]. For each convex relaxation, we

employ the alternating direction method of multipliers algorithm [3], permitting a treatment

of problems of medium to large size. Moreover, we study the operating characteristics of

the proposed inference method and compare against the debias methods through numerical

examples. In simulations, we demonstrate that the proposed method performs well under

various scenarios, and compares favorably against its competitors. Finally, we apply the

proposed method to confirm that a reduced level of connectivity is observed in certain brain

regions in the default mode network but an increased level in others for Alzheimer’s disease

(AD) patients as compared to healthy subjects.

The rest of the article is organized as follows. Section 2 proposes a constrained likeli-

hood ratio test, and gives specific conditions under which the asymptotic approximation of

the sampling distribution of the test is valid for the Gaussian graphical model and linear

regression. Section 3 performs the power analysis for the CMLR test. Section 4 discusses

computational strategies for the proposed test. Section 5 performs numerical studies, fol-

lowed by an application of the tests to detect the structural changes in brain network analysis

for Alzheimer’s disease subjects versus healthy subjects in Section 6. Section 7 is devoted to

technical proofs.
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2 Constrained likelihood ratios

Given an iid sample X1, . . . , Xn from a probability distribution with density p✓, consider

a testing problem H0 : ✓i = 0; i 2 B versus Ha : ✓i 6= 0 for some i 2 B, with unspecific

nuisance parameters ✓j for j 2 Bc, possibly high-dimensional, where ✓ = (✓1, · · · , ✓d) 2 Rd,

and B ✓ {1, . . . , d}. Here we allow the dimension of ✓ and size of |B| to grow as a function

of the sample size n. For a problem of this type, we construct a constrained likelihood ratio

with a sparsity constraint on nuisance parameters ✓Bc . Specifically, define

b✓(0) = argmax
✓

Ln(✓) subj to:
X

i/2B

p⌧ (|✓i|)  K and ✓B = 0 (1)

b✓(1) = argmax
✓

Ln(✓) subj to:
X

i/2B

p⌧ (|✓i|)  K , (2)

where Ln(✓) =
P

n

i=1 log p✓(Xi) is the log-likelihood, p⌧ (x) = min(x/⌧, 1) is the truncated L1-

function [21] as a surrogate of the L0-function, and (K, ⌧) are nonnegative tuning parameters.

In this situation, without the sparsity constraint, b✓(0) and b✓(1) in (1) and (2) are exactly the

maximum likelihood estimates underH0 andHa, respectively. Now we define the constrained

likelihood ratio as: ⇤n(B) = 2
⇣
Ln

�b✓(1)
�
� Ln

�b✓(0)
�⌘

. In what is to follow, we derive the

asymptotic distribution of ⇤n(B) in a high-dimensional situation for the Gaussian graphical

model and linear regression. On this ground, an asymptotically similar test is derived, whose

null distribution is independent of nuisance parameters.

Tuning parameters K and ⌧ in (1) and (2) are estimated using a cross-validation (CV)

criterion based on the full model (1). Choosing the same values of (K, ⌧) in (1) and (2)

ensures the nestedness property of ⇤n(B) � 0 because the constrained set in (1) is a subset

of that in (2). With K = 1, the test statistic ⇤n(B) reduces to the classical likelihood ratio

test statistic.
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2.1 Asymptotic distribution of ⇤n(B) in graphical models

This subsection is devoted to a Gaussian graphical model, where X1 · · · ,Xn follow from

a p-dimensional normal distribution N(0,⌦�1), with ⌦ a precision matrix, or the inverse

of the covariance matrix ⌃. In this case, ✓ = ⌦. The log-likelihood is Ln(✓) = Ln(⌦) =

n

2 log det(⌦) � n

2 tr(⌦S), where S = n�1
P

n

i=1 XiX>
i

is the sample covariance matrix, and

tr(·) denotes the trace of a matrix.

In the foregoing testing framework, the null and alternative hypotheses can be written as:

H0 : ⌦B = 0 versus Ha : ⌦B 6= 0 for some prespecified index set B. Then the constrained

log-likelihood ratio becomes ⇤n(B) = 2(Ln(b⌦(1)) � Ln(b⌦(0))), where b⌦(0) and b⌦(1) are the

constrained maximum likelihood estimates (CMLE)s based on the null and full spaces of the

test.

To establish the asymptotic distribution of ⇤n(B), we first introduce some notations to

be used. For any symmetric matrix M , let �max(M ) and �min(M ) be the maximum and

minimum eigenvalues of M , and kMkF be the Frobenius norm of M . Let \ and | · | denote

the set di↵erence and the size of a set. For any vector a 2 Rm, let kak2 =
p

a21 + . . .+ a2
m
.

Denote by ⌦̄
0
A[B = argmin⌦�0:⌦(A[B)c=0 K(⌦0,⌦) an approximating point in a space {⌦ :

⌦ � 0,⌦(A[B)c = 0} to the true ⌦
0, where K(⌦0,⌦) = 1

2

�
tr(⌦⌃

0) + log det(⌦0)
det(⌦) � p

�
is

the Kullback-Leibler information. Let k⌦0 � ⌦k = k
p
⌃0(⌦ � ⌦

0)
p
⌃0kF be the Fisher-

norm between ⌦
0 and ⌦ [20]. Moreover, let A0 = {i : ✓0

i
6= 0} be the support of true

parameter ✓0, 0 = �max(⌦0)/�min(⌦0) be the condition number of ⌦0, and 1 = �̄
2
max

�
2
min(⌦

0)
,

where �̄max = maxA:|A||A0|,A\B=; �max(⌦̄0
A[B). Let �̄min = minA:|A||A0|,A\B=; �min(⌦̄0

A[B).

Let �min = min(i,j)2A0 |!0
ij
| be the minimum nonzero o↵diagonals of ⌦0, representing the

signal strength. The following technical conditions are made.

Assumption 1 (Degree of separation)

Cmin = min
A:A 6=A0, |A|=|A0|, A\B=;

min

✓
k⌦0 � ⌦̄

0
A[Bk2

|A0 \ A| , 1

◆
� C11

(|A0|+ |B|) log p
n

, (3)

where C1 > 0 is a constant.

6



Assumption 1 requires that the degree of separation Cmin exceeds a certain threshold

level, roughly (|A0|+|B|) log p
n

, which measures the level of di�culty of the task of removing zero

components of the nuisance (un-hypothesized) parameters of ⌦ by the constrained likelihood

with the L0-constraint. To better understand (3) of Assumption 1, we consider a su�cient

condition of (3) as follows:

Note that k⌦0 � ⌦̄
0
A[Bk � �min(⌃0)k⌦0 � ⌦̄

0
A[BkF � ��1

max(⌦
0)�min

p
|A0 \ A|. Conse-

quently, a simpler but stronger condition of (3) in terms of �min is

min(�min ,�max(⌦
0)) � C20�̄max

r
(|A0|+ |B|) log p

n
(4)

for some constant C2 > 0.

Assumption 2 (Dimension restriction for ⇤n(B)). Assume that
0(|B|+ |A0|) log pp

n
! 0, as n ! 1.

Assumption 2 restricts the size p for an asymptotic approximation of the sampling dis-

tribution of the likelihood ratio tests, which is closely related to that in [18] for a di↵erent

problem. Note that if |A0| = O(p) and |B| = O(p) then Assumption 2 roughly requires that

p log p/
p
n ! 0.

Theorem 1 gives the asymptotic distribution of ⇤n(B) when |B| is either fixed or grows

with n, referred to as Wilks phenomenon and generalized Wilks phenomenon, respectively.

Theorem 1 (Asymptotic sampling distribution of ⇤n(B)) Under Assumptions 1-2, there

exists optimal tuning parameters (K, ⌧) with K = |A0| and ⌧  �̄min min(
p
Cmin,C

2
min)

12|A0| such that

under H0

(i) Wilks phenomenon: If !0
ij
= 0 for (i, j) 2 B with |B| fixed, then

⇤n(B)
d�! �2

|B| as n ! 1 .

(ii) Generalized Wilks phenomenon: If !0
ij
= 0 for (i, j) 2 B with |B| ! 1, then

(2|B|)�1/2(⇤n(B)� |B|) d�! N(0, 1) as n ! 1 .

Concerning Assumptions 1 and 2, we remark that the degree of separation assumption (3)

or (4) is necessary for the result of Theorem 1. Without Assumption 1, the result may break
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down, as suggested by a counter example in Lemma 1 for a parallel condition—Assumption 3

in linear regression in Section 2.2. This is expected because when the constrained likelihood

can not be over-selection consistency when Assumption 1 breaks down in view of the result

of [21]. That means that any under-selected component yields a bias of order
q

log p
n

. As a

result, the foregoing results are not generally expected to hold. Moreover, Assumption 2 is

intended for joint inference of multiple parameters, for instance, testing zero o↵diagonals of

one row or column of ⌦ as in the second simulation example of Section 4. These assumptions,

as we believe, are needed for multivariate tests based on a full likelihood although we have

not proved so, which appear stronger than those required for a univariate debias test based

on a pseudo likelihood [11]. This is primarily due to the full likelihood approach estimating

component to component dependencies in lieu of a marginal approach without them, leading

to higher e�ciency when possible. This is evident from Corollary 1 that the CMLR gives

more precise inference than the debias test under these conditions.

The result of Theorem 1 depends on the optimal tuning parameter K = K0 and ⌧ , both

of which are unknown in practice. Therefore, K is estimated by cross-validation through

tuning, and the exact knowledge of the value K is not necessary, whereas ⌧ is usually set to

be a small number, say 10�2, in practice.

2.2 Asymptotic distribution of ⇤n(B) in linear regression

In linear regression, a random sample (Yi,xi)ni=1 follows

Yi = �Txi + ✏i; ✏i ⇠ N(0, �2); i = 1, · · · , n, (5)

where � = (�1, · · · , �p)T and xi = (xi1, · · · , xip)T are p-dimensional vectors of regression

coe�cients and predictors, and xi is independent of random error ✏i. In (5), it is known

priori that � is sparse in that �j = 0, j /2 A0 and �j 6= 0, j 2 A0, where A0 ✓ {1, 2, . . . , p}.
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In this case, ✓ = (�, �). Our focus is to test H0 : �B = 0 versus Ha : �B 6= 0 for some

index set B. The log-likelihood is Ln(✓) = Ln(�, �) = � 1
2�2kY � X�k22 � n log(

p
2⇡�),

and the constrained log-likelihood ratio is accordingly defined as ⇤n(B) = 2(Ln(b�(1), �̂(1))�

Ln(b�(0), �̂(0))), where b�(0) and b�(1) are the CMLE based on the null and full spaces of the

test.

A parallel condition of Assumption 1 is made in Assumption 3.

Assumption 3 (Degree of separation condition [22])

min
A:|A||A0| and A 6=A0

inf
�

kX�0 �XA[B�A[Bk22
n|A0 \ A| � C0�

2 log p

n
(6)

for some absolute constant C0 that may depend on the design matrix X.

A parallel result of Theorem 1 is established for linear regression.

Theorem 2 (Sampling distribution of ⇤n(B)) Assume that
p

|B|(|A0|+|B|)
n

! 0. Under As-

sumptions 3, there exists optimal tuning parameters (K, ⌧) with K = |A0| and 0 < ⌧ 

�
q

6
(n+2)p�max(X>X) such that under H0

(i) Wilks phenomenon: If �i = 0 for i 2 B with |B| fixed, then

⇤n(B)
d�! �2

|B| as n ! 1 .

(ii) Generalized Wilks phenomenon: If �i = 0 for i 2 B with |B| ! 1, then

(2|B|)�1/2(⇤n(B)� |B|) d�! N(0, 1) as n ! 1 .

Note of worthy is that the requirement
p

|B|(|A0|+|B|)
n

! 0 in linear regression appears

weaker than that (|A0|+|B|) log p
n1/2 ! 0 in the Gaussian graphical model. This is primarily

because the error for the likelihood ratio approximation in the former is smaller in magnitude.

Next we provide a counter example to show that the result in Theorem 2 breaks down

when Assumption 3 is violated in the absence of a strong signal strength. In other words,

such an assumption is necessary for such a full likelihood approach to gain the test e�ciency,
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which is in contrast to a pseudo-likelihood approach.

Lemma 1 (A counter example) In (5), we write y = �0 + �>x, where x = (x1, . . . , xp)

are independently distributed from N(µi, 1) with µ1 = 0 and µj = 1; 2  j  p, and ✏

is N(0, 1 � n�1), independent of x. Assume that �0 = 0 and � = (n�1/2, 0, . . . , 0), or,

y = n�1/2x1+✏. Then Assumption 3 is violated. Now consider a hypothesis test of H0 : �0 = 0

versus H1 : �0 6= 0. If log p
n

! 0 as n, p ! 1, then ⇤n(B)
p! 1 as n, p ! 1, with B = {0}.

3 Power analysis

This section analyzes the local limiting power function of the CMLR test and compare it with

that of the debias test of [11] in Gaussian graphical model. To that end, we first establish

the asymptotic distribution of b✓B under the null H0 for fixed index set B for the Gaussian

graphical model and linear model. Then, we use those results to carry out a local power

analysis for both models.

3.1 Asymptotic normality

We first introduce some notations before presenting the asymptotic normality results for

Gaussian graphical model. Let vecB(C) =
�p

1 + I(i 6= j)cij
�
(i,j):(i,j) or (j,i)2B is a sub-vector

of vec(C) excluding components with indices not in B, vec(C) =
�p

1 + I(i 6= j)cij
�
ij

2

R
p(p+1)

2 is a scaled vectorization of a p ⇥ p symmetric matrix C [1] and I(·) is the indica-

tor. For the Fisher information, we need the symmetric Kronecker product [1] for a p ⇥ p

symmetric matrix C to treat derivatives of the log-likelihood with respect to a matrix. De-

fine the symmetric Kronecker product of C C ⌦s C 2 R
p(p+1)

2 ⇥ p(p+1)
2 as (C ⌦s C) vec(�) =

vec (C�C) for any symmetric matrix �, and define the Fisher information matrix for the

p(p+1)
2 -dimensional vector vec(⌦) as I = r2

�
�1

2 log det⌦
0
�
= 1

2⌃
0 ⌦s ⌃

0, c.f., Lemma 2.

Given an index set B, we define a |B| ⇥ |B| submatrix IB,B as IB,B =
�
I(i,j),(k,l)

�
(i,j),(k,l)2B,
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extracting the corresponding |B|⇥ |B| submatrix from I. Theorem 1 below gives the asymp-

totic distribution of vecB(b⌦(1)).

Proposition 1 (Asymptotic distribution of CMLE b⌦(1) for Gaussian graphical model) Un-

der Assumptions 1-2, if |B| is fixed, there exists a pair of tuning parameters (K, ⌧) with

K = |A0| and ⌧  �̄min min(
p
Cmin,C

2
min)

12|A0| such that b⌦(1) satisfies:

p
n vecB(b⌦(1) �⌦

0)
d�! N

✓
0,
⇣
I�1
A0[B,A0[B

⌘

B,B

◆
, (7)

where
⇣
I�1
A0[B,A0[B

⌘

B,B

extracts a |B|⇥ |B| submatrix from I�1
A0[B,A0[B.

For linear regression, a similar asymptotic result can be derived.

Proposition 2 (Asymptotic distribution of CMLE) Assume that X>
A0[BXA0[B is inevitable.

Under Assumptions 3, if |B| is fixed, there exists a pair of tuning parameters (K, ⌧) with

K = |A0| and ⌧  �
q

6
(n+2)p�max(X>X) such that b✓(1)

B
satisfies:

p
n(b�(1)

B
� �0

B
)

d�! N
⇣
0,
�
(n�1X>

A0[BXA0[B)
�1
�
B,B

⌘
, (8)

where MB,B extracts a |B|⇥ |B| submatrix from a matrix M .

3.2 Local power analysis

Consider a local alternative Ha ✓n
i

= ✓0
i
+ (�n)i; i 2 B with (�n)Bc = 0, for any ✓Bc ,

with k�nk2 = hp
n
if |B| is fixed, k�nk2 = h|B|1/4p

n
if |B| ! 1, for some constant h. Let

✓n = (✓n1 , · · · , ✓nd )T . Subsequently, we study the behavior of the local limiting power function

for the proposed CMLR test ⇡LR(h, ✓Bc) = lim infn!1 PHa(⇤n(B) � �2
↵,|B|) if |B| is fixed

and lim infn!1 PHa((2|B|)�1/2⇤n(B) � |B|) � z↵) if |B| ! 1. Let the corresponding

⇡debias(h, ✓Bc) of the debias test in [11] in the Gaussian graphical model as a result for

linear regression is similar.
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Theorem 3 If for any ✓n = ⌦n the Assumptions 1-2 for the Gaussian graphical model are

met and further assume that |B|3/2/n ! 0, then for any nuisance parameters ⌦Bc,

⇡LR(h,⌦Bc) !

8
>><

>>:

P
⇣
kZ + n1/2J�1/2

B,B
�nk22 � �2

↵,|B|

⌘
when |B| is fixed,

P
✓
Z +

n�>n J�1
B,B�np
2|B|

� z↵

◆
when |B| ! 1,

where ↵ > 0 is the level of significance, Z ⇠ N(0, I|B|⇥|B|) is a multivariate normal random

variable, Z ⇠ N(0, 1), and JB,B is the asymptotic variance of vecB(b⌦(1)) in (7). In partic-

ular, limh!1 ⇡LR(h,⌦Bc) = 1. Moreover, in the one-dimensional situation with |B| = 1, for

any h and ⌦Bc,

⇡LR(h,⌦Bc) � ⇡debias(h,⌦Bc). (9)

Theorem 3 suggests that the proposed CMLR test has the desirable power properties,

which dominates the corresponding debias tests, which is attributed to optimality of the

corresponding CMLE and likelihood ratio, as suggested by Theorem 1. Note that the debias

test requires Assumption 2.

Next we compare the asymptotic variance of our estimator to that of [11] for the one-

dimensional case with |B| = 1. As indicated by Corollary 1 below, our estimator has

asymptotic variance that is no larger than that of its debias counterpart.

Corollary 1 (Comparison of asymptotic variances) Under the assumption of Theorem 1,

the asymptotic covariance matrix of
⇥p

n(b!ij � !0
ij
)
⇤
(i,j)2B is upper bounded by the matrix

⇥
!0
i0j!

0
ij0 + !0

jj0!
0
ii0

⇤
(i,j)2B,(i0,j0)2B, where b!ij is the ijth element of the CMLE b⌦. When spe-

cializing the above result to the one-dimensional case, it implies that the asymptotic variance

of
p
n(b!ij � !0

ij
) is no larger than

⇥
!0
ij

⇤2
+ !0

ii
!0
jj
, the asymptotic variance of the regression

estimator in [11].

A parallel result of Theorem 3 is established for linear regression.
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Theorem 4 If for any ✓n = �n the Assumptions 1-2 for the linear regression model are met.

Then

⇡LR(h, �Bc) !

8
>><

>>:

P
⇣
kZ + n1/2AXB�nk22 � �2

↵,|B|

⌘
if |B| is fixed;

P
✓
Z + nkAXB�nk22p

2|B|
� z↵

◆
if |B| ! 1 .

(10)

where A 2 Rn⇥|B| with columns being the eigenvalues of PA0[B � PA0, Z ⇠ N(0, 1), and

Z is a |B| dimensional normal random vector. Hence, for any nuisance parameters �Bc,

limh!1 ⇡LR(h, �Bc) = 1.

4 Computation

To compute the CMLEs under the null and full spaces in (1) and (2), we approximately

solve constrained nonconvex optimization through di↵erence convex (DC) programming.

Particularly, we follow the DC approach of [21] to approximate the nonconvex constraint

by a sequence of convex constraints based on a di↵erence convex decomposition iteratively.

This leads to an iterative method for solving a sequence of relaxed convex problems. The

reader may consult [21] for convergence of the method.

For (1) and (2), at the m-th iteration, we solve

max✓ Ln(✓)

subj to
P

i/2A1
|!ij|I(|b![m]

i
|  ⌧)  ⌧

⇣
K �

P
i/2A1

I(|b![m]
i

| > ⌧)
⌘
,✓A2 = 0 ,

(11)

to yield b✓[m+1], where A1 = B and A2 = ; for (1) and A1 = A2 = B for (2). Iteration

continues until two adjacent iterates are equal. To solve (11), we employ the alternating

direction method of multipliers algorithm [3], which amounts to the following iterative up-

dating scheme

✓[k+1] = argmin
✓

⇣
�Ln(✓) + (⇢/2) ·

��✓ � �[k] + � [k]
��2
2

⌘
, (12)

�(k+1) = PF [m]

�
✓[k+1] + � [k]

�
, � [k+1] = � [k] + ✓[k+1] � �[k+1], (13)

where F [m] =
nX

i/2A1

|✓i|I(|✓[m]
i

|  ⌧)  ⌧
�
K �

X

(i,j)/2A1

I(|✓[m]
i

| > ⌧)
�
, ✓A2 = 0

o
,
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PF [m](·) denotes the projection onto the set F [m], and ⇢ > 0 is fixed or can be adaptively

updated using a strategy in [30]. Note that in both cases, the ✓-update (12) can be solved

using an analytic formula involving a singular value decomposition for the Gaussian graphical

model (cf. Section 6.5 of [3]) and solving a linear system for the linear model, while (13) is

performed using the L1-projection algorithm of [15] whose complexity is almost linear in a

problem’s size. Specifically, consider a generic problem of projection onto a weighted L1-ball

subject to equality constraint:

minx2Rd
1
2kx� yk22 subj to

P
i/2A ci|xi|  z and xi = 0, i 2 A ,

where ci � 0; i = 1, · · · , d and A is a subset of {1, · · · , d}. The solution of this problem is

x?

i
= 0 if i 2 A; x?

i
= yi if

P
i/2A ci|yi|  z; x?

i
= sgn(yi)max (|yi|� ci�?, 0) otherwise, where

�? is a root of f(�) =
P

i/2A ci max (|yi|� ci�, 0) � z. This root-finding problem is solved

e�ciently by bisection.

5 Numerical examples

This section investigates operating characteristics of the proposed CMLR test with regard to

the size and power of a test through simulations and compare with several strong competitors

in the literature.

For the Gaussian graphical model, we examine three di↵erent types of graphs– a chain

graph, a hub graph, and a random graph, as displayed in Figure 1. For a given graph

G = (V , E), ⌦ is generated based on connectivity of the graph, that is, !ij 6= 0 i↵ there

exists a connection between nodes i and j for i 6= j. Moreover, we set !ij = .3 if i and j

are connected and diagonals equal to .3 + c with c chosen so that the smallest eigenvalue of

the resulting matrix equals to .2. Finally, a random sample of size n = 200 is drawn from

N(0,⌦�1).

In what follows, we consider two hypothesis testing problems concerning conditional

14



independence of components of a Gaussian random vector X = (X1, · · · , Xp). The first

concerns null hypothesis H0 : !i0j0 = 0 versus its alternative Ha : !i0j0 6= 0; i0 6= j0, for

testing conditional independence between Xi0 and Xj0 . The second deals with H0 : !i0j = 0;

1  j 6= i0  p versus Ha : !i0j 6= 0 for some j 6= i0, for testing conditional independence

of component i0 with the rest. In either case, we apply the proposed CMLR test in Section

2 and compare it with the univariate debias test of [11] in terms of the empirical size and

power only in the first problem. To our knowledge, no competing methods are available for

the second problem in the present situation.

For the size of a test, we calculate its empirical size as the percentage of times rejecting

H0 out of 1000 simulations when H0 is true. For the power of a test, we consider four

di↵erent alternatives: Ha : !ij = !(l)
ij

for (i, j) 6= (i0, j0) and !(l)
i0j0

=
!i0j0 l

4 , l = 1, · · · , 4.

Under each alternative, we compute the power as the percentage of times rejecting H0 out

of 1000 simulations when Ha is true.

With regard to tuning, we fix ⌧ = .001 and propose to use a vanilla cross-validation to

choose the optimal tuning parameter K for our test by minimizing a prediction criterion

using a five-fold CV. Specifically, we divide the dataset into five roughly equal parts denoted

by D1, · · · ,D5. Define b⌃l and b⌃�l respectively as the sample covariance matrices calculated

based on samples in Dl and {D1, · · · ,D5} \ Dl; l = 1, · · · , 5. Similarly, define b⌦�l(K) to

be the precision matrix calculated based on sample covariance matrix b⌃�l; l = 1, · · · , 5.

The five-fold CV criterion is CV(K) = 5�1
P5

l=1

⇣
� log det

�b⌦�l(K)
�
+tr

⇥b⌃l
b⌦�l(K)

⇤
� p
⌘
.

Then the optimal tuning parameter is obtained by minimizing CV(K) over a set of grids in

the domain of K. Finally, K? = argmin
K
CV(K) is used to compute the final estimator

based on the original data.

For the first testing problem, the nominal size of a test is set to 0.05 for our CMLR

test and the univariate debias test of [11], denoted as CMLR-chi-square and JG, where

the confidence interval in [11] is converted to a two-sided test. For each graph type, three
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di↵erent graph sizes p = 50, 100, 200 are examined. As indicated in Table 1, the empirical

size of the CMLR test is under or close to the nominal size 0.05. Moreover, as suggested in

Table 1 , the power of the likelihood ratio test is uniformly higher across all the 12 scenarios

with four alternatives and three di↵erent dimensions, where the largest improvements are

seen for the hub graph, particularly with p = 100, 200 for an amount of improvement of 50%

or more. This result is anticipated because the likelihood method is more e�cient than a

regression approach.

To study operating characteristics of the constrained likelihood test, we focus on the

validity of asymptotic approximations based on the chi-square or normal distribution under

H0. For the first problem, Figure 2 indicates that the chi-square approximation on one degree

of freedom is adequate for the likelihood ratio test. Similarly, for the second testing problem

involving a column/row of ⌦, Figure 3 confirms that the normal approximation is again

adequate for the CMLR test. Overall, the asymptotic approximations appear adequate.

For the linear model, we perform a parallel simulation study to compare the CMLR

test with the debiased lasso test [28, 24] and the method of [29]. In (5), we examine

(n, p) = (100, 50), (100, 200), (100, 500), (100, 1000), in which predictors xij and the error

✏i are generated independently from N(0, 1), where �0 = (1, 2, 3, �0
B
,0) and k�Bk2 = l/10;

l = 0, 1, . . . , 4. Now consider a hypothesis test with null hypothesis H0 : �B = 0 versus its

alternative Ha : �B 6= 0, where we let |B| = 1, 5, 10. With regard to size, power, and tuning,

we follow the same scheme as in the Gaussian graphical model.

As indicated in Table 2, the empirical size of CMLR-chi-square and CMLR-normal

are close to the target size 0.05, while the former does better than the latter for |B| is small

and worse for large |B|, which corroborates with the result of Theorem 2. Moreover, the

power of CMLR-chi-square is uniformly higher across all the three scenarios with four

alternatives compared to the other two competing methods. Interestingly, when |B| is large,

the method of [29] seems to control the size closer to the nominal level than the CMLR
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test, but the situation is just the opposite when |B| is not large. Additional simulations also

suggest that similar results are obtained with additional correlation among covariates, which

are not displayed in here.

Concerning sensitivity of the choice of tuning parameters (K, ⌧) for the proposed method,

as illustrated in Figure 7, the choice of ⌧ is much less sensitive than that of K. Moreover,

when K � K0, both the size and power become less sensitive to a change of K. With regard

to the estimated K by cross-validation, the estimator K̂ is close to K0 = 3 in the linear

regression example, as suggested by Table 2,

In summary, our simulation results suggest that the proposed method achieves high power

compared to its competitors [11, 28, 24, 29]. Moreover, the asymptotic approximation seems

adequate in all the examples.

Figures 1-7 and Tables 1-2 about here

6 Brain network analysis

Alzheimer’s disease (AD) is the most common dementia without cure, while the prevalence

is projected to continuously increase with an estimated 11% of the US senior population in

2015 to 16% in 2050, costing over 1.1 trillion in 2050 [2]. AD is now widely believed to be a

disease with disrupted brain networks, and cortical networks based in structural MRI have

been constructed to contrast with that of normal/healthy controls [10]. Using the ADNI-1

baseline data (adni.loni.usc.edu), we extracted the cortical thicknesses for p = 68 regions of

interest (ROIs) based on the Desikan-Killany atlas [5]. Since previous studies (e.g., [9, 17])

have identified the default mode network (DMN) to be associated with AD, we will pay

particular attention to this subnetwork, which includes 12 ROIs in our dataset. As in [10],

we first regress the cortical thickness on five covariates (gender, handedness, education, age

and intercranial volume measured at baseline), then use the residuals to estimate precision

matrices, for 145 AD patients and 182 normal controls (CNs) respectively. Our approach
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here di↵ers from previous studies [10, 17] not only in estimating precision matrices, instead

of covariance matrices, but also in rigorous inference.

For this data, we consider a hypothesis test of H0 : !ij = 0 versus Ha : !ij 6= 0;

1  i 6= j  12. For each estimated network for the two groups, significant edges under the

overall error rate ↵ = 0.05, after Bonferroni correction, are reported for the proposed CMLR

test and the debias test of [11] or JG. As indicated in Figure 7, the CMLR test yields 28

and 33 significant edges for the two groups of CN and AD, which is in contrast to 29 and 28

significant edges by the JG test. In other words, the CMLR test detects slightly more edges

than the JG test, which is in agreement of the simulation results in Table 1.

In what follows, we will focus on scientific interpretations of the statistical findings by

the CMLR test. As shown in [17], it is confirmed that for the AD patients, as compared

to the normal controls, there seems to be reduced connectivity within DMN, but increased

connectivity for some other ROIs, that is, the salience network and the executive network

reported in [17]. Moreover, it seems that connectivity between the left and right brain within

DMN somewhat deteriorates for the AD patients. To further explore the latter point, we then

separately test the independence between each node in DMN and the other nodes outside

DMN using the proposed CMLR test with the standard normal approximation. Specifically,

for node i in DMN, we test H0 : !ij = 0 for all j /2 DMN versus Ha : !ij 6= 0 for some

j 2 DMN, where DMN denotes the set of 12 nodes in DMN. This amounts to 2 ⇥ 12 = 24

tests, with 12 tests for each group. Specifically, it is confirmed that for the group AD,

only L-parahippocampal (left side) is independent of all the other nodes outside DMN; in

contrast, for the CN group, in addition to L-parahippocampal, three other ROIs in DMN,

L-medial prefrontal cortex, R-parahippocampal, and R-precuneus are independent of all the

other nodes outside DMN.
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7 Appendix

The following lemmas provide some key results to be used subsequently. Detailed proofs of

Lemmas 2-8 are provided in a online supplementary materials due to space limit. Before

proceeding, we introduce some notations. Given an index set A ✓ {(i, j) : 1  i  j  p},

define CMLE b⌦A as b⌦A = argmax⌦�0,⌦Ac=0 Ln(⌦), with � indicating positive definiteness

of a matrix. Worthy of note is that b⌦A becomes the oracle estimator when A = A0, where

A0 = {(i, j) : i  j,!0
ij

6= 0} is the index set including all the indices corresponding to

nonzero entries of the true precision matrix ⌦
0 = (!0

ij
)p⇥p

Lemma 2 For any symmetric matrices C1 and C2, vec(C1)> vec(C2) = tr(C1C2). More-

over, for any positive definite matrix C � 0,

r (log detC) = � vec(C�1) , r2 (� log det⌦0) = C�1 ⌦s C�1 , (14)

I = 1
2⌃

0 ⌦s ⌃
0, (15)

Var
�
vec(XX>)

�
= 4I with X ⇠ N(0,⌃0) , (16)

vec(C)>I vec(C) = 1
2 tr (⌃

0C⌃
0C) . (17)

Lemma 3 For any symmetric matrix T and ⌫ > 0

P (| tr ((S �⌃
0)T ) | � ⌫)  2 exp

⇣
�n ⌫

2

9kT k2+8⌫kT k

⌘
, (18)

where kT k2 = n

2 Var (tr ((S �⌃
0)T )). Furthermore, for T1, · · · ,TK such that kTkk  c0; k =

1, · · · , K with c0 > 0 and any ⌫ > 0, we have that

P
✓

max
1kK

��tr((S �⌃
0)Tk)

�� � ⌫

◆
 2 exp

✓
�n

⌫2

9c20 + 8c0⌫
+ logK

◆
, (19)

which implies that max1kK |tr((S �⌃
0)Tk)| = Op

✓
c0

q
logK
n

◆
. Particularly, for any ⌫ > 0

and any index set B,

P
�
k vecB(S �⌃

0)k1 � ⌫
�
 2 exp

✓
�n

⌫2

9�2
max(⌃

0) + 8⌫�max(⌃0)
+ log |B|

◆
, (20)

implying that k vecB(S �⌃
0)k1 = Op

✓
�max(⌃0)

q
log |B|

n

◆
.

Lemma 4 (The Kullback-Leibler divergence and Fisher-norm) For a positive definite matrix

⌦ 2 Rp⇥p, a connection between the Kullback-Leibler divergence K(⌦0,⌦) and the Fisher-
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norm k⌦0 �⌦k can be established:

K(⌦0,⌦) � min

 
1

16
p
2
,

p
K(⌦0,⌦)

2
p
6

!
k⌦0 �⌦k, (21)

K(⌦0,⌦) � min

✓
1

16
p
2
,
k⌦0 �⌦k

24

◆
k⌦0 �⌦k . (22)

Lemma 5 (Rate of convergence of constrained MLE) Let Ã ◆ A0 be an index set. For b⌦
Ã
,

we have that

kb⌦
Ã
�⌦

0k  12kI�1/2

Ã,Ã
vec(⌃0 � S)k2 . (23)

on the event that {kI�1/2

Ã,Ã
vec

Ã
(⌃0 � S)k2 < 1

8
p
2
}. Moreover, if |Ã| log p

n
! 0, then

kb⌦
Ã
�⌦

0k = Op

0

@

s
|Ã| log p

n

1

A . (24)

Lemma 6 (Selection consistency) If K = |A0|, ⌧  �̄min min(
p
Cmin,C

2
min)

12|A0| , then

max
⇣
P
⇣
b⌦(0) 6= b⌦A0

⌘
, P
⇣
b⌦(1) 6= b⌦A0[B

⌘⌘

 2 exp

✓
�nCmin

2560⇥ 512
+ 2 log p

◆
+ exp

✓
�n

2560
+ |A0| log p

◆

+2 exp

0

B@�n
min

⇣q
min(Cmin/512 ,3/32)
48�̄2

max(|A0|+|B|) ,�max(⌃0)
⌘2

18�2
max(⌃

0)
+ 2 log p

1

CA �! 0 (25)

as n ! 1 under Assumptions 1-2, where b⌦(0), b⌦(1), and Cmin are as defined in (1)–(3).

Lemma 7 Let �k = (�k1, · · · �km) 2 Rm; k = 1, · · · , n be iid random vectors with Var(�1) =

Im⇥m. If m is fixed, then

n�1k
nX

k=1

�kk22
d�! �2

m
, as n ! 1 . (26)

Otherwise, if max
�
m,m2m/n,m3/n,m3m3/2/n2

�
! 0, where mj = max1im E�2j

1i ; j = 2, 3,

then k
P

n

k=1 �kk22 � nm

n
p
2m

d�! N(0, 1), as n ! 1 . (27)

Lemma 8 Let X ⇠ N(0,⌃0) and � = tr(XX>�⌃
0)T ) with T a symmetric matrix. Then

E(�2m)  (2m� 1)! 2m�1
�
E(�2)

�m
for any integer m � 1 . (28)

Lemma 9 (Asymptotic distribution for log-likelihood ratios) The log-likelihood ratio statistic

Lr = 2(Ln(b⌦Ã
) � Ln(b⌦A0)), where b⌦

Ã
is the MLE over index set Ã with Ã ◆ A0. Denote

by 0 the condition number of ⌃0. If 0|Ã| log pp
n

! 0 with p � 2, then,
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Lr
P0�! W|B|, if |B| is a constant;

Lr � |B|p
2|B|

P0�! Z, if |B| ! 1,

where B = Ã \ A0, W|B| follows a chi-square distribution �2 on |B| degrees of freedom and

Z ⇠ N(0, 1), respectively.

Proof of Theorem 1: By Lemma 6, P
⇣
b⌦(0) = b⌦A0

⌘
�! 1; P

⇣
b⌦(1) = b⌦A0[B

⌘
�! 1, as

n ! 1 under Assumptions 1-2. Then, the asymptotic distribution of the likelihood ratio

follows immediately from Lemma 9.

Proof of Proposition 1: Let Ã = A0 [ B. By Lemma 6, P
⇣
b⌦(1) = b⌦A0[B

⌘
�! 1, as

n ! 1. Asymptotic normality of vecB
⇣
b⌦A0[B

⌘
follows from an expansion of the score

equation. Specifically, note that
p
n vecB

⇣
b⌦A0[B �⌦

0
⌘
=

p
n

2

h
I�1
Ã,Ã

i

B,Ã

⇣
vec

Ã
(⇤)� vecA

⇣
R( b�

Ã
)
⌘⌘

,

where R( b�
Ã
) = ⌃

0
P1

i=2(�1)i
� b�A⌃

0
�i
. Let J = I�1

Ã,Ã
be as defined in (B.33) of the online

supplementary material. Multiplying J�1/2
B,B

on both sides of this identity, we obtain
p
nJ�1/2

B,B
vecB

⇣
b⌦A0[B �⌦

0
⌘
=

p
n

2
J�1/2
B,B

J
B,Ã

⇣
vec

Ã
(⇤)� vec

Ã

⇣
R( b�

Ã
)
⌘⌘

. (29)

Next we show that the first term tends to N(0, I|B|⇥|B|) in distribution and the second term

tends to 0 in probability. For the second term, following similar calculations as in (B.34) of

the online supplementary material, we have that
���J�1/2

B,B
J
B,Ã

x
���
2

2
= x>Jx � x>I�1

A0,A0x 

x>Jx  ��2
min(⌃

0)kxk22 for any x 2 R|A|. This, together with (B.37) of the online supple-

mentary material, implies that
���.5

p
nJ�1/2

B,B
J
B,Ã

vec
Ã

�
R( b�A)

����
2
 .5

p
n
���J1/2 vec

Ã

⇣
R( b�

Ã
)
⌘���

2

 .5
p
n��1

min(⌃
0)
���R( b�

Ã
)
���
2


p
n0k⌃0 b�

Ã
k2
F
= Op

 
0|Ã| log pp

n

!
= op(1) (30)

under Assumption 2. For the first term, note that

Cov

✓
1

2
J�1/2
B,B

J
B,Ã

vecA(XX> �⌃
0) ,

1

2
J�1/2
B,B

J
B,Ã

vec
Ã
(XX> �⌃

0)

◆

= J�1/2
B,B

J
B,Ã

Cov

✓
1

2
vec

Ã
(XX> �⌃

0) ,
1

2
vec

Ã
(XX> �⌃

0)

◆
J
Ã,B

J�1/2
B,B

= J�1/2
B,B

J
B,Ã

I
Ã,Ã

J
Ã,B

J�1/2
B,B

= I|B|⇥|B| .

where the second last equality uses the property of exponential family [4]. Hence, by the
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central limit theorem, vec
Ã
(⇤)

d�! N
⇣
0,
⇥
I�1
Ã,Ã

⇤
B,B

⌘
. Finally, by Slutsky’s Theorem, we

obtain that
p
n vecB

⇣
b⌦A0[B �⌦

0
⌘

d�! N
⇣
0,
⇥
I�1
Ã,Ã

⇤
B,B

⌘
. This completes the proof.

Proof of Proposition 2: By Theorem 3 of [22], P
⇣
{b�(1) = b�ls

A0[B}
⌘
! 1, as n, p ! 1.

Hence, with probability tending to 1,

b�(1)
B

= vecB
�
(X>

A0[BXA0[B)�1X>
A0[BY

�
= vecB

�
(X>

A0[BXA0[B)�1X>
A0[B(XA0[B�0

A0[B + ✏)
�

= �0
B
+ vecB

�
(X>

A0[BXA0[B)�1X>
A0[B✏

�
.

Simple moment generating function calculations show that when |B| is fixed,

vecB
�
(X>

A0[BXA0[B)
�1X>

A0[B✏
�
⇠ N

⇣
0,
⇥
(X>

A0[BXA0[B)
�1
⇤
B,B

⌘
.

Hence,
p
n(b�(1)

B
� �0

B
)

d! N
⇣
0,
⇥
(n�1X>

A0[BXA0[B)�1
⇤
B,B

⌘
. This completes the proof.

Proof of Corollary 1: Let Ã = A0 [ B. The result follows directly from Theorem 1.

Specifically, we bound the asymptotic covariance matrix of
⇥p

n(b!ij � !0
ij
)
⇤
(i,j)2B for any

B of fixed size. Note that the asymptotic covariance matrix of
p
n vecB(b⌦Ã

� ⌦
0) can be

bounded:
h
I�1
Ã,Ã

i

B,B

� [I�1]
B,B

= 2 [⌦0 ⌦s ⌦
0]

B,B
. Moreover, for any (i, j), (i0, j0) 2 B,

2 [⌦0 ⌦s ⌦
0](i,j),(i0,j0) can be written asp

1 + I(i 6= j)
p

1 + I(i0 6= j0)

2
tr
�
(eie

>
j
+ eje

>
i
)⌦0(ei0e

>
j0 + ej0e

>
i0 )⌦

0
�

=
p

1 + I(i 6= j)
p

1 + I(i0 6= j0)
�
!0
i0j!

0
ij0 + !0

jj0!
0
ii0
�
.

Using vecB(C) = (
p

1 + I(i 6= j)cij)(i,j)2B, the asymptotic variance of
⇥p

n(b!ij � !0
ij
)
⇤
(i,j)2B

is upper bounded by a |B|⇥ |B| matrix
⇥
!0
i0j!

0
ij0 + !0

jj0!
0
ii0

⇤
(i,j)2B,(i0,j0)2B. Particularly, when

B = {(i, j)}, this reduces to an upper bound on the asymptotic variance
⇥
!0
ij

⇤2
+ !0

ii
!0
jj
.

This completes the proof.

Proof of Theorem 2: By Theorem 3 of [22], P
⇣
{b�(1) = b�ls

A0[B} \ {b�(0) = b�ls

A0}
⌘
! 1, as

n, p ! 1, by Assumption 1, where b�ls

A
is the least square estimate over A. Hence, in what

22



follows, we focus our attention to event {b�(1) = b�ls

A0[B} \ {b�(0) = b�ls

A0}.

Easily, after profiling out �, we have ⇤n(B) = n
⇣
log(ky �X b�(0)k22)� log(ky �X b�(1)k22)

⌘
.

Then an application of Taylor’s expansion of log(1� x) yields that

n
�
log(ky �X�k22)� log(ky �X�0k22)

�
= �n

1X

i=1

(2✏>X� � kX�k22)i

ik✏k2i2
(31)

where � = � � �0. Moreover, on the event {b�(1) = b�ls

A0[B} \ {b�(0) = b�ls

A0},

b�(1) = �0 + (X>
A0[BXA0[B)

�1X>
A0[B✏ and b�(0) = �0 + (X>

A0XA0)�1X>
A0✏, (32)

implying that X(b�(1) � �0) = PA0[B✏ and X(b�(0) � �0) = PA0✏. Consequently, replacing

� = b�(1) � �0, the right-hand of (31) reduces to

�n
1X

i=1

�
✏>PA0[B✏

�i

ik✏k2i2
= � n

k✏k22

 
✏>PA0[B✏+

1X

i=2

�
✏>PA0[B✏

�i

ik✏k2(i�1)
2

!
.

Similarly, replacing � by b�(1)��0, (31) becomes � n

k✏k22

✓
✏>PA0✏+

P1
i=2

(✏>PA0✏)
i

ik✏k2(i�1)
2

◆
. Taking

the di↵erence leads to that ⇤n(B) =
n✏>(PA0[B�PA0 )✏

k✏k22
+R(✏), where R(✏) is

1X

i=2

�
✏>PA0[B✏

�i �
�
✏>PA0✏

�i

ik✏k2(i�1)
2

=
1X

i=2

✏>(PA0[B � PA0)✏
⇣P

i�1
j=0

�
✏>PA0[B✏

�j �
✏>PA0✏

�i�j�1
⌘

ik✏k2(i�1)
2

.

Note that PA0[B � PA0 is idempotent with the rank |B|. Moreover, ✏>PA0✏  ✏>PA0[B✏.

Thus, R(✏) is no greater than

✏>(PA0[B � PA0)✏
1X

i=2

✓
✏>PA0[B✏

k✏k22

◆i�1

= ✏>(PA0[B � PA0)✏
✏>PA0[B✏

k✏k22

✓
1� ✏>PA0[B✏

k✏k22

◆�1

on the event that {✏>PA0[B✏ < k✏k22}. This, together with the facts that n/k✏k22
P! 1 and

23



|A0|/n ! 0, implies that ⇤n(B)
d! �2(|B|) when |B| is fixed, and ⇤n(B)�|B|p

2|B|
d! N(0, 1) when

|B| ! 1 and
p

|B|(|A0|+|B|)
n

! 0, because

R(✏)/
p

|B|  ✏>(PA0[B � PA0)✏p
|B|

✏>PA0[B✏

k✏k22

✓
1� ✏>PA0[B✏

k✏k22

◆�1
P! 0

provided that
p

|B|(|A0|+|B|)
n

! 0 and |B| ! 1. This completes the proof.
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Chain graph Hub graph Random graph

Figure 1: Three types of graphs used in our simulations.
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Figure 2: Empirical null distribution of the proposed CMLR test based on the chi-square

approximation with n = 200.
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Figure 3: Empirical null distribution of our likelihood ratio test based on the normal ap-

proximation for the second testing problem involving a single column/row.
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Figure 5: Estimated networks by the proposed method (first row) and the method [11]

(second row) for the CN (Left) and AD (right) groups, where reported edges are significant

under a p-value of .05 after Bonferroni correction. Nodes with square shape belong to DMN.

The solid edges denote those that are shared by the two groups, whereas the dashed edges

denote those that are only present within one group.
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CMLR-chi-square JG

Graph (n, p) Size Power Size Power
band (200,50) .054 (.27, .78, .98, 1.0) .043 (.24, .77, .99, 1.0)

(200,100) .055 (.30, .79, .98, 1.0) .042 (.24, .75, .99, 1.0)
(200,200) .048 (.29, .80, .99, 1.0) .036 (.23, .74, .98, 1.0)

hub (200,50) .019 (.10, .36, .74, .95) .005 (.06, .27, .66, .92)
(200,100) .028 (.12, .43, .81, .96) .005 (.02, .17, .54, .86)
(200,200) .031 (.16, .55, .86, .98) .001 (.02, .15, .50, .86)

random (200,50) .034 (.15, .51, .86, .98) .025 (.14, .49, .83, .98)
(200,100) .041 (.21, .68, .94, 1.0) .018 (.11, .53, .92, .99)
(200,200) .049 (.15, .47, .81, .96) .034 (.14, .41, .78, .95)

Table 1: Empirical size and power comparisons of the proposed CMLR test and test of
[11], denoted by CMLR-chi-square and JG, in the first testing problem for the Gaussian
graphical model based on 1000 simulations.
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|B| n p Method Size Power K̂

1 100 50 CMLR-chi-square 0.057 (0.165, 0.489, 0.837, 0.972) 3.36 (1.08)
CMLR-normal 0.061 (0.17, 0.495, 0.84, 0.972) NA
Zhang & Cheng 0.039 (0.109, 0.262, 0.579, 0.788) NA
DL 0.033 (0.132, 0.404, 0.724, 0.917) NA

200 CMLR-chi-square 0.055 (0.17, 0.524, 0.829, 0.974) 3.191 (0.591)
CMLR-normal 0.058 (0.176, 0.532, 0.834, 0.975) NA
Zhang & Cheng 0.013 (0.042, 0.116, 0.306, 0.476) NA
DL 0.052 (0.144, 0.358, 0.694, 0.888) NA

500 CMLR-chi-square 0.051 (0.175, 0.509, 0.838, 0.963) 3.159 (0.583)
CMLR-normal 0.051 (0.179, 0.513, 0.84, 0.963) NA
Zhang & Cheng NA NA NA
DL NA NA NA

1000 CMLR-chi-square 0.056 (0.165, 0.512, 0.828, 0.962) 3.115 (0.371)
CMLR-normal 0.058 (0.17, 0.522, 0.83, 0.964) NA
Zhang & Cheng NA NA NA
DL NA NA NA

5 100 50 CMLR-chi-square 0.058 (0.11, 0.328, 0.63, 0.865) 3.33 (0.94)
CMLR-normal 0.052 (0.109, 0.322, 0.619, 0.862) NA
Zhang & Cheng 0.05 (0.063, 0.115, 0.226, 0.346) NA
DL NA NA NA

200 CMLR-chi-square 0.066 (0.114, 0.297, 0.601, 0.878) 3.188 (0.606)
CMLR-normal 0.063 (0.112, 0.289, 0.592, 0.878) NA
Zhang & Cheng 0.037 (0.052, 0.111, 0.153, 0.253) NA
DL NA NA NA

500 CMLR-chi-square 0.064 (0.124, 0.321, 0.625, 0.895) 3.153 (0.56)
CMLR-normal 0.061 (0.118, 0.315, 0.618, 0.893) NA
Zhang & Cheng NA NA NA
DL NA NA NA

1000 CMLR-chi-square 0.059 (0.118, 0.304, 0.612, 0.872) 3.11 (0.355)
CMLR-normal 0.057 (0.112, 0.3, 0.604, 0.869) NA
Zhang & Cheng NA NA NA
DL NA NA NA

10 100 50 CMLR-chi-square 0.068 (0.094, 0.252, 0.528, 0.794) 3.41 (1.20)
CMLR-normal 0.059 (0.085, 0.233, 0.503, 0.775) NA
Zhang & Cheng 0.054 (0.055, 0.085, 0.146, 0.21) NA
DL NA NA NA

200 CMLR-chi-square 0.086 (0.115, 0.253, 0.514, 0.786) 3.193 (0.618)
CMLR-normal 0.079 (0.104, 0.238, 0.487, 0.767) NA
Zhang & Cheng 0.049 (0.055, 0.089, 0.106, 0.152) NA
DL NA NA NA

500 CMLR-chi-square 0.093 (0.123, 0.286, 0.54, 0.773) 3.159 (0.585)
CMLR-normal 0.078 (0.113, 0.262, 0.516, 0.76) NA
Zhang & Cheng NA NA NA
DL NA NA NA

1000 CMLR-chi-square 0.073 (0.123, 0.252, 0.526, 0.779) 3.11 (0.355)
CMLR-normal 0.066 (0.112, 0.23, 0.497, 0.766) NA
Zhang & Cheng NA NA NA
DL NA NA NA

Table 2: Empirical size and power comparisons in linear regression as well as estimated tun-
ing parameter K̂ by a 5-fold cross-validation over 1000 simulations. Here “CMLR-chi-square”,
“CMLR-normal”, “DL”, and “Zhang & Cheng” denote the proposed test based on a chi-square
approximation, a normal approximation, the debias method of [28], and the method of [29]. Note
that the nominal size is 0.05, DL is a test converted from a confidence interval, and NA means that
a result is not applicable or the code fail to return a result after a code’s runtime exceeds one week.
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Appendix for “On high-dimensional constrained

maximum likelihood inference”

A Technical details of the counter example

Lemma 1 (A counter example) In (5) in the main text, we write y = �0+�>x, where x =

(x1, . . . , xp) are independently distributed from N(µi, 1) with µ1 = 0 and µj = 1; 2  j  p,

and ✏ is N(0, 1 � n�1), independent of x. Assume that �0 = 0 and � = n�1/2, 0, . . . , 0),

or, y = n�1/2x1 + ✏. Then Assumption 3 is violated. Now consider a hypothesis test of

H0 : �0 = 0 versus H1 : �0 6= 0. If
log p
n

! 0 as n, p ! 1, then ⇤n(B)
p! 1 as n, p ! 1,

with B = {0}.

Proof of Lemma 1. Under the linear model, we have that

yi = �0 + �>xi + ✏i; i = 1, . . . , n , (A.1)

where � = (�1, 0, · · · , 0) and �0 = 0, xi = (xi1, . . . , xip) ⇠ N(µ, Ip⇥p), and ✏i ⇠ N(0, 1� �2
1)

and is independent of xi. Then, the constrained MLE for �0 is

�̂(1)
0 = argminPp

i=1 I(�i 6=0)1

nX

i=1

(yi � �0 � �>xi)
2 = ȳ � ccor(x·j? , y)

sy
sx·j?

x̄·j? , (A.2)

where x·j denotes a n-dimensional vector (x1j, . . . , xnj), ccor denotes the sample correlation

between two vectors, x̄ and sx denote the sample mean and sample covariance of a vector x,
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respectively, and

j? = argmax
1jp

ccor(x·j, y) (A.3)

denotes the index of which feature has the largest sample correlation between y. For each

observation (yi,xi), it is easy to write out its joint distribution

(yi, xi1, . . . , xip) ⇠ N

0

BBBBBBBBBB@

(�1µ1, µ1, . . . , µp)
>,

0

BBBBBBBBBB@

1 �1 0 · · · 0

�1 1 0 · · · 0

0 0 1 · · · 0

...
...

. . .

0 0 0 · · · 1

1

CCCCCCCCCCA

1

CCCCCCCCCCA

. (A.4)

Hence, the conditional distribution of xi given yi is

xi|yi ⇠ N

0

BBBBBBB@

(�1(yi � �1µ1) + µ1, µ2, . . . , µp)
>,

0

BBBBBBB@

1� �2
1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

1

CCCCCCCA

1

CCCCCCCA

(A.5)

from which we can easily see that components of xi are conditionally independent given yi.

Note that

ccor(x·j, y) =
(n� 1)�1

P
n

i=1 xij(yi � ȳ)

s·jsy
, j = 1, . . . , p (A.6)

and Var(y) = Var(xij) = 1. Hence,

p
nccor(x·j, y)|y

d
= Zj + op(1) , (A.7)

where Zj =
Pn

i=1 xij(yi�ȳ)
(n�1)sy

, j = 1, . . . , p, and Zj’s are independent and normally distributed
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conditioned on y. By (A.5), we have that

Z1 ⇠ N
�
�1sy, 1� �2

1

�
and Zj ⇠ N(0, 1) for j = 2, . . . , p . (A.8)

Consequently, conditioned on y,

�̂(1)
0 = ȳ� ccor(x·j? , y)

sy
sx·j?

x̄·j? = ȳ��1µ1+�1µ1� ccor(x·j? , y)sy
x̄·j? � µj?

sx·j?
� ccor(x·j? , y)sy

µj?

sx·j?

Now, we let µ1 = 0 and µ2 = · · · = µp = 1. Moreover, note that

ȳ � �1µ1 = Op

✓
1p
n

◆
and

����
x̄j? � µj?

sxj?

����  max
1jp

����
x̄j � µj

sxj

����  O

 r
log p

n

!
. (A.9)

Hence, if
q

log p
n

 O(1), then

�̂(1)
0 = �ccor(x·j? , y)sy

µj?

sx·j?
+Op

✓
1p
n

◆
. (A.10)

Now we choose �1 to be small number so that with nonzero probability {j? 6= 1}, that is,

we need P(Z1  min2jp Zj) to be nonzero, which is easy to achieve when �1 is chosen to

be close to 0. Under the event {j? � 2}

�̂(1)
0 = �ccor(x·j? , y)sy

µj?

sx·j?
+Op

✓
1p
n

◆
= � max

2jp

ccor(x·j, y)
sy
sx·j?

+Op

✓
1p
n

◆

= Op

 r
log p

n

!
+Op

✓
1p
n

◆
,

because max2jp ccor(x·j, y) = Op

✓q
log p
n

◆
and sy ! 1 in probability and sx·j? ! 1 in

probability. Hence, n
⇣
�̂(1)
0

⌘2

! 1 if p ! 1 as n ! 1. Next, we show that under this

model, the log-likelihood ratio test statistic is of the same order as n�̂2
0 under the null model.
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Toward this end, denote by f(�0) = supk�k01,�>0 n
�1Ln(�0,�, �). By definition of �̂(1)

0 ,

it must maximizes f(�0) as a function of �0 and hence must satisfies f 0(�̂(1)
0 ) = 0. Moreover,

we note that the log-likelihood ratio can be rewritten in terms of f(·)

⇤n(B) = 2n(f(�̂(1)
0 )� f(0)) (A.11)

Applying a Taylor expansion around �̂(1)
0 , we obtain

⇤n(B) = �n(�̂(1)
0 )2f 00(�?) (A.12)

where �? is some number between 0 and �̂(1)
0 . Under log p/n ! 0, it is easy to show that �̂(1)

0

is consistent, hence converges to 0 in probability. Hence, ⇤n(B) = �n(�̂(1)
0 )2(f 00(0)+op(1))

P!

1, which completes the proof.

B Proofs of Lemmas 2-9

This section provides detailed proofs of Lemmas 2-9 to be used in “On high-dimensional

constrained maximum likelihood inference”.

Lemma 2 For any symmetric matrices C1 and C2, vec(C1)> vec(C2) = tr(C1C2). More-

over, for any positive definite matrix C � 0,

r (log detC) = � vec(C�1) , r2 (� log det⌦0) = C�1 ⌦s C�1 , (B.1)

I = 1
2⌃

0 ⌦s ⌃
0, (B.2)

Var
�
vec(XX>)

�
= 4I with X ⇠ N(0,⌃0) , (B.3)

vec(C)>I vec(C) = 1
2 tr (⌃

0C⌃
0C) . (B.4)
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Proof of Lemma 2: By the definition, (B.1) follows from an identity:

vec(C1)
> vec(C2) =

X

ij

(1 + I(i 6= j))S1(i, j)S2(i, j) =
X

i,j

S1(i, j)S2(i, j) = tr(S1S2) .

Moreover, it follows from Taylor’s expansion of the log det function that

log det(C +�)� log det(C) = tr(C�1
�)� 1

2
tr
�
(C�1

�)2
�
+ o(kC�1/2

�C�1/2k2
F
)

= vec(C�1)> vec(�)� 1

2
vec(�)> vec(C�1

�C�1) + o(kC�1/2
�C�1/2k2

F
)

= vec(C�1)> vec(�)� 1

2
vec(�)>

�
C�1 ⌦s C

�1
�
vec(�) + o(kC�1/2

�C�1/2k2
F
) ,

where the definition of ⌦s and (B.1) have been used. This yields (B.2).

For (B.3), the log-likelihood forX ⇠ N(0,⌃0) is �1
2 vec(⌦

0)> vec(XX>)+ 1
2 log det(⌦

0).

Using properties of the exponential family [2], Var
�
1
2 vec(XX>)

�
= r2

�
�1

2 log det⌦
0
�
= I,

implying (B.3). Finally, for any symmetric matrix C, note that

vec(C)>I vec(C) =
1

2
vec(C)>

�
⌃

0 ⌦s ⌃
0
�
vec(C)

=
1

2
vec(C)> vec(⌃0C⌃

0) =
1

2
tr(C⌃

0C⌃
0),

leading to (B.4). This completes the proof.

Lemma 3 For any symmetric matrix T and ⌫ > 0

P (| tr ((S �⌃
0)T ) | � ⌫)  2 exp

⇣
�n ⌫

2

9kT k2+8⌫kT k

⌘
, (B.5)

where kT k2 = n

2 Var (tr ((S �⌃
0)T )). Furthermore, for T1, · · · ,TK such that kTkk  c0; k =
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1, · · · , K with c0 > 0 and any ⌫ > 0, we have that

P
✓

max
1kK

��tr((S �⌃
0)Tk)

�� � ⌫

◆
 2 exp

✓
�n

⌫2

9c20 + 8c0⌫
+ logK

◆
, (B.6)

which implies that max1kK |tr((S �⌃
0)Tk)| = Op

✓
c0

q
logK
n

◆
. Particularly, for any ⌫ > 0

and any index set B,

P
�
k vecB(S �⌃

0)k1 � ⌫
�
 2 exp

✓
�n

⌫2

9�2
max(⌃

0) + 8⌫�max(⌃0)
+ log |B|

◆
, (B.7)

implying that k vecB(S �⌃
0)k1 = Op

✓
�max(⌃0)

q
log |B|

n

◆
.

Proof of Lemma 3: By Markov’s inequality, for any ⌫ > 0,

P
�
tr
�
(S �⌃

0)T
�
� ⌫

�
 exp

✓
��

p
n⌫

2

◆
E exp

✓
�
p
n

2
tr
�
(S �⌃

0)T
�◆

 exp
⇣
logE exp

✓
�
p
n

2
tr
�
(S �⌃

0)T
�◆

� �
p
n⌫

2| {z }
I1

⌘
,

where � is chosen such that � 2
h
0, M0

p
n

k
p
⌃0T

p
⌃0kF

i
for some constant 0 < M0 < 1, which is to

be determined later. Moreover, after some calculations, we have that

E exp
⇣�

p
n

2
tr
�
(S �⌃

0)T
� ⌘

=
⇣
E exp

✓
�
p
n

2
tr
�
(XXT �⌃

0)T
�◆⌘n

= exp

✓
��

p
n

2
tr(⌃0T )

◆
det

✓
I � �p

n
⌃

0T

◆�n/2

,(B.8)

where X ⇠ N(0,⌃0) and the last equality requires that
p
n⌦0 ⌫ �T , which is ensured by

the fact that �  M0
p
n

k
p
⌃0T

p
⌃0kF

<
p
n

k
p
⌃0T

p
⌃0kF

. Consequently,

logE exp

✓
�
p
n

2
tr
�
(S �⌃

0)T
�◆

= log det

✓
I � �p

n
⌃

0T

◆�n/2

� �
p
n

2
tr(⌃0T ) . (B.9)
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An expansion of the log det function gives

log det(I � �p
n
⌃

0T )�n/2

=
�
p
n

2
tr(⌃0T ) +

�2

4
tr((⌃0T )2) +

n

2

1X

l=3

l�1 tr
�
(
�⌃0Tp

n
)l
�

| {z }
I2

. (B.10)

For I2, note that I2  n

2

P1
l=3 l

�1
⇣

�kT kp
n

⌘l

 �2kT k2 3�M0
12(1�M0)

. Similarly, I1  M1+1
4 �2kT k2 �

�
p
n⌫

2 , where M1 = 3�M0
3(1�M0)

. Minimizing this upper bound of I1 as a function of � over the

interval
h
0, M0

p
n

kT k

i
, we obtain that

I1  � n⌫
2

4(1+M1)kT k2 if ⌫  M0(1 +M1)kT k

I1  � nM0
2kT k

⇣
⌫ � M0(1+M1)

2 kT k
⌘

otherwise.

A combination of these two cases yields that I1  � nM0⌫
2

4M0(M1+1)kT k2+2⌫kT k . Set M0 = 4�1, and

then M1 = 11/9, we obtain the desired results

P
⇣
tr
�
(S �⌃

0)T
�
� ⌫

⌘
 exp

⇣
� n

⌫2

9kT k2 + 8⌫kT k

⌘
,

for any ⌫ > 0. The other direction follows exactly the same argument, and thus is omitted.

Finally, (B.7) follows by letting {T1, · · · ,Tk} =
�
(e>

i
ej + e>

j
ei)/2

 
(i,j)2B then applying

an inequality k
p
⌃0(e>

i
ej + e>

j
ei)

p
⌃0/2k2

F
 �max(⌃0) and a union bound. This completes

the proof.

Lemma 4 (The Kullback-Leibler divergence and Fisher-norm) For a positive definite matrix
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⌦ the following connection holds:

K(⌦0,⌦) � min

 
1

16
p
2
,

p
K(⌦0,⌦)

2
p
6

!
k⌦�⌦

0k, (B.11)

K(⌦0,⌦) � min

✓
1

16
p
2
,
k⌦�⌦

0k
24

◆
k⌦�⌦

0k. (B.12)

Proof of Lemma 4: Let � = ⌦ � ⌦
0 and �1, · · · ,�p be the eigenvalues of

p
⌃0�

p
⌃0.

Then �j > �1; j = 1, · · · , p, because Ip⇥p +
p
⌃0�

p
⌃0 =

p
⌃0⌦

p
⌃0 is positive definite.

Moreover, let B1 =
P

p

i=1 �
2
i
I(�i  1/3), B2 =

P
p

i=1 �
2
i
I(�i > 1/3), and B3 =

P
p

i=1 �iI(�i >

1/3). Easily, k⌦ � ⌦
0k =

p
B1 +B2. Using the inequality x � log(1 + x) � 6�1x2I(x 

1/3) + 8�1xI(x > 1/3) for x > �1, we have that

K(⌦0,⌦) =
1

2

⇣
tr(

p
⌃0�

p
⌃0)� log det(Ip⇥p +

p
⌃0�

p
⌃0)

⌘

=
1

2

pX

i=1

�i �
1

2

pX

i=1

log(1 + �i)

� 12�1
pX

i=1

�2
i
I(�i  1/3) + 16�1

pX

i=1

�iI(�i > 1/3) = 12�1B1 + 16�1B3 .

Next we examine two cases. First, if B1 < B2, then
K(⌦0

,⌦)
k⌦�⌦0k � 12�1

B1+16�1
B3p

B1+B2
� B3

16
p
2B2

� 1
16

p
2

because B2
3 � B2. If B1 � B2, then

K(⌦0,⌦)

k⌦�⌦0k � 12�1B1 + 16�1B3p
B1 +B2

� B1

12
p
B1 +B2

� B1 +B2

24
p
B1 +B2

�
p
B1 +B2

24
=

k⌦�⌦
0k

24
.

Similarly,

K(⌦0,⌦)

k⌦�⌦0k �
p

K(⌦0,⌦)

p
12�1B1 + 16�1B3p

B1 +B2

�
p
K(⌦0,⌦)

p
24�1(B1 +B2)p

B1 +B2

=

p
K(⌦0,⌦)

2
p
6

.

This leads to (B.12) and (B.11).
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Lemma 5 (Rate of convergence of constrained MLE) Let Ã ◆ A0
be an index set. For b⌦

Ã
,

we have that

kb⌦
Ã
�⌦

0k  12kI�1/2

Ã,Ã
vec(⌃0 � S)k2 . (B.13)

on the event that {kI�1/2

Ã,Ã
vec

Ã
(⌃0 � S)k2 < 1

8
p
2
}. Moreover, if

|Ã| log p
n

! 0, then

kb⌦
Ã
�⌦

0k = Op

0

@

s
|Ã| log p

n

1

A . (B.14)

Proof of Lemma 5: By definition of the CMLE, Ln(b⌦Ã
)�Ln(⌦0) � 0, or � log det b⌦

Ã
+

log det⌦0  � tr((b⌦
Ã
�⌦

0)S). By the Cauchy-Schwarz inequality, this inequality becomes

2K(⌦0, b⌦
Ã
)  tr((b⌦

Ã
�⌦

0)(⌃0 � S))  k
p
⌃0(b⌦

Ã
�⌦

0)
p
⌃0kFkI�1/2

Ã,Ã
vec

Ã
(⌃0 � S)k2

= kb⌦
Ã
�⌦

0kkI�1/2

Ã,Ã
vec

Ã
(⌃0 � S)k2 (B.15)

On the other hand, by (B.12)
K(⌦0

,b⌦Ã)

kb⌦Ã�⌦0k
� min

⇣
1

16
p
2
,
kb⌦Ã�⌦0k

24

⌘
, which, together with (B.15),

implies that min
⇣

1
8
p
2
,
kb⌦Ã�⌦0k

12

⌘
 kI�1/2

Ã,Ã
vec

Ã
(⌃0�S)k2. If

kb⌦Ã�⌦0k
12  1

8
p
2
, then it follows

immediately that kb⌦
Ã
� ⌦

0k  12kI�1/2

Ã,Ã
vec

Ã
(⌃0 � S)k2. If

kb⌦Ã�⌦0k
12 > 1

8
p
2
, then 1

8
p
2


kI�1/2

Ã,Ã
vec(⌃0 �S)k2, which does not happen on the event {kI�1/2

Ã,Ã
vec

Ã
(⌃0 �S)k2 < 1

8
p
2
}.

Moreover, by property of exponential family [2], Var(vec
Ã
(⌃0 � S)) = 4n�1I

Ã,Ã
. Thus,

Var(I�1/2

Ã,Ã
vec

Ã
(⌃0 � S)) = 4n�1I|Ã|⇥|Ã|. This, combined with Lemma 3, implies that

kI�1/2

Ã,Ã
vec

Ã
(⌃0 � S)k2 

q
|Ã|kI�1/2

Ã,Ã
vec

Ã
(⌃0 � S)k1 = Op

0

@

s
|Ã| log p

n

1

A (B.16)

on the event that {kI�1/2

Ã,Ã
vec

Ã
(⌃0 � S)k2 < 1

8
p
2
}. This event, on the other hand, happens

with probability tending to 1 by the assumption that |Ã| log p
n

! 0. This completes the proof.
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Lemma 6 (Selection consistency) If K = |A0|, ⌧  �̄min min(
p
Cmin,C

2
min)

12|A0| , then

max
⇣
P
⇣
b⌦(0) 6= b⌦A0

⌘
, P

⇣
b⌦(1) 6= b⌦A0[B

⌘⌘

 2 exp

✓
�nCmin

2560
+ 2 log p

◆
+ exp

✓
�n

2560⇥ 512
+ |A0| log p

◆

+2 exp

0

B@�n
min

⇣q
min(Cmin/512 ,3/32)
48�̄2

max(|A0|+|B|) ,�max(⌃0)
⌘2

18�2
max(⌃

0)
+ 2 log p

1

CA �! 0 (B.17)

as n ! 1 under Assumptions 1-2, where b⌦(0)
, b⌦(1)

, and Cmin are as defined in (1)–(3).

Proof of Lemma 6: Let Â = {(i, j) : |b!(1)
ij
| � ⌧, (i, j) /2 B}. By definition, |Â|  |A0|,

Â \ B = ; and
P

(i,j)/2Â[B |b!(1)
ij
|  ⌧(|A0| � |Â|). Hence, if Â = A0, then b⌦(1) = b⌦A0[B.

Suppose Â 6= A0. On event {Â = A}; with fixed A 6= A0, |A|  |A0|, and A \ B = ;,

we bound the Fisher-norm between b⌦(1)
A[B and an approximating point of ⌦

0, ⌦̄
0
A[B =

argmin⌦:⌦(A[B)c=0 K(⌦0,⌦). Let ⌃̄
0
A[B = (⌦̄0

A[B)
�1. By the Karush-Kuhn-Tucker condi-

tions, vecA[B(⌃̄0
A[B) = vecA[B(⌃0). Moreover, let �̄max = maxA:|A|K,A\B=; �max(⌦̄0

A[B)

and �̄min = minA:|A|K,A\B=; �min(⌦̄0
A[B). We also define

G =

8
<

:kS �⌃
0k1  min

0

@ 1

16
p
2�̄max

p
|A0|+ |B|

,

s
C̃min

48�̄2
max|A0 [ B|

,�max(⌃
0)

1

A

9
=

; ,

where

C̃min = min
A:A 6=A0, |A|=|A0|, A\B=;

min

✓
max(K(⌦0, ⌦̄0

A[B), K
2(⌦0, ⌦̄0

A[B))

|A0 \ A| , 1

◆
. (B.18)

By definition of the CMLE, Ln(b⌦(1))�Ln(⌦̄0
A[B) � 0, or � log det b⌦(1)+log det ⌦̄0

A[B 

� tr((b⌦(1) � ⌦̄
0
A[B)S). Now let b� = b⌦(1)

A[B � ⌦̄
0
A[B and � = b⌦(1) � b⌦(1)

A[B, where k�k1 =
P

(i,j)/2Â[B |b!(1)
ij
|  (|A0|� |A|)⌧ . By the Cauchy-Schwarz inequality, the forgoing inequality

10



becomes

� log det(Ip⇥p +
q

⌃̄0
A[B( b�+�)

q
⌃̄0

A[B) + tr(
q

⌃̄0
A[B( b�+�)

q
⌃̄0

A[B)

 tr(( b�+�)(⌃̄0
A[B � S)) = vecA( b�)> vecA(⌃̄

0
A[B � S) + tr(�(⌃̄0

A[B � S))

= (Ī1/2
A[B,A[B vecA[B( b�))>Ī�1/2

A[B,A[B vecA[B(⌃
0
A[B � S) + tr(�(⌃̄0

A[B � S))


����
q
⌃̄0

A[B
b�
q

⌃̄0
A[B

����
F

���Ī�1/2
A[B,A[B vecA[B(⌃

0
A[B � S)

���
2
+ ⌧(|A0|� |A|)k⌃̄0

A[B � Sk1


����
q
⌃̄0

A[B
b�
q

⌃̄0
A[B

����
F

�max(⌦̄
0
A[B)

p
|A [ B|k⌃0 � Sk1

+(2�max(⌃
0) + �max(⌃̄

0
A[B))⌧K

 �̄max

p
|A0 [ B|

����
q
⌃̄0

A[B
b�
q

⌃̄0
A[B

����
F

k⌃0 � Sk1 + 3�̄�1
min⌧K (B.19)

on the event G, where ĪA[B,A[B =
⇥
⌃̄

0
A[B,A[B ⌦s ⌃̄

0
A[B,A[B

⇤
A[B,A[B. On the other hand, by

Lemma 4,

� log det(Ip⇥p +
q

⌃̄0
A[B( b�+�)

q
⌃̄0

A[B) + tr(
q

⌃̄0
A[B( b�+�)

q
⌃̄0

A[B)

� min

 
k
p

⌃̄0
A[B( b�+�)

p
⌃̄0

A[BkF
8
p
2

,
k
p

⌃̄0
A[B( b�+�)

p
⌃̄0

A[Bk2F
12

!

� min

 
k
p

⌃̄0
A[B

b�
p

⌃̄0
A[BkF

8
p
2

,
k
p

⌃̄0
A[B

b�
p

⌃̄0
A[Bk2F

24

!

�max

✓
(|A0|� |A|)�max(⌃̄0

A[B)⌧

8
p
2

,
(|A0|� |A|)2�2

max(⌃̄
0
A[B)⌧

2

12

◆

� min

 
k
p

⌃̄0
A[B

b�
p

⌃̄0
A[BkF

8
p
2

,
k
p

⌃̄0
A[B

b�
p

⌃̄0
A[Bk2F

24

!
� �max(⌃̄0

A[B)K⌧

8

where the last two inequalities use that kM1+M2k2F � 2�1kM1k2F�kM2k2F , k
p

⌃̄0
A[B�

p
⌃̄0

A[Bk2F 

�2
max(⌃̄

0
A[B)k�k2

F
 �2

max(⌃̄
0
A[B)k�k21  �2

max(⌃̄
0
A[B)(|A0|� |A|)2⌧ 2, and min(a� b, c� d) �

11



min(a, c)�max(b, d). Combining this with (B.19), we obtain

�̄max

p
|A0 [ B|

����
q

⌃̄0
A[B

b�
q
⌃̄0

A[B

����
F

k⌃0 � Sk1 + 4�̄�1
min⌧K

� min

 
k
p

⌃̄0
A[B

b�
p
⌃̄0

A[BkF
8
p
2

,
k
p
⌃̄0

A[B
b�
p
⌃̄0

A[Bk2F
24

!
,

which implies that

����
q

⌃̄0
A[B

b�
q

⌃̄0
A[B

����
F

 24�̄max

p
|A0 [B|kS �⌃

0k1 + 4
q
6�̄�1

min⌧K ,

on the event {Â = A} \ G. Next, note that

2

n

⇣
Ln(b⌦(1))� Ln(⌦

0)
⌘
+ 2

�
L(⌦0)� L(⌦̄0

A[B)
�

=
2

n

⇣
Ln(b⌦(1))� Ln(⌦̄

0
A[B)

⌘
+ tr

�
(⌦0 � ⌦̄

0
A[B)(S �⌃

0)
�

= 2
⇣
L(b⌦(1))� L(⌦̄0

A[B)
⌘
+ tr((S � ⌃̄

0
A[B)(b⌦(1) � ⌦̄

0
A[B)) + tr

�
(⌦0 � ⌦̄

0
A[B)(S �⌃

0)
�

 tr((S � ⌃̄
0
A[B)(b⌦(1) � b⌦(1)

A[B) + tr((S �⌃
0)(b⌦(1)

A[B � ⌦̄
0
A[B))

+ tr
�
(⌦0 � ⌦̄

0
A[B)(S �⌃

0)
�

(B.20)

For the first two terms, using ⌧  �̄min min(
p

C̃min,C̃
2
min)

12|A0| and kS�⌃
0k1 

q
C̃min

48�̄2
max(|A0|+|B|) , we

have that on the event G

tr((S �⌃
0)(b⌦(1)

A[B � ⌦̄
0
A[B)) + tr((S � ⌃̄

0
A[B)(b⌦(1) � b⌦(1)

A[B)


����
q

⌃̄0
A[B

b�
q

⌃̄0
A[B

����
F

���Ī�1/2
A[B,A[B vecA[B(S �⌃

0)
���
2
+ ⌧KkS � ⌃̄

0
A[Bk1

 24min

 
�̄2
max|A0 [ B|kS �⌃

0k21 ,
�̄max

p
|A0 [ B|kS �⌃

0k1
16
p
2

!

+

p
3�̄�1

min⌧K

4
+ 3�̄�1

min⌧K

 2�1K(⌦0, ⌦̄0
A[B) + 2�1K(⌦0, ⌦̄0

A[B)) = L(⌦0)� L(⌦̄0
A[B) ,

12



which, together with (B.20), implies that for any A 6= A0, |A|  K,A\B = ;, we have that

n
Ln(b⌦(1))� Ln(⌦

0) � 0; Â = A;G
o
✓
�
tr
�
(⌦0 � ⌦̄

0
A[B)(S �⌃

0)
�
� L(⌦0)� L(⌦̄0

A[B)
 

Hence,

P
⇣
b⌦(1) 6= b⌦A0[B

⌘


X

A:A 6=A0,|A|K,A\B=;

P
⇣
Ln(b⌦(1))� Ln(⌦

0) � 0; Â = A;G
⌘
+ P(Gc)


X

A:A 6=A0,|A|K,A\B=;

P
�
tr
�
(⌦0 � ⌦̄

0
A[B)(S �⌃

0)
�
� L(⌦0)� L(⌦̄0

A[B)
�
+ P(Gc) ,

where the first probability can be further bounded by applying Lemmas 3 and 4.

X

A:A 6=A0,|A|K,A\B=;

P
�
tr
�
(⌦0 � ⌦̄

0
A[B)(S �⌃

0)
�
� L(⌦0)� L(⌦̄0

A[B)
�


X

A:A 6=A0,|A|K,A\B=;

exp

✓
�n10�1K2(⌦0, ⌦̄0

A[B)

k⌦̄0
A[B �⌦0k2 +K(⌦0, ⌦̄0

A[B)k⌦̄0
A[B �⌦0k

◆


X

A:A 6=A0,|A|K,A\B=;

exp

 
�nmin

�
128�1 , K(⌦0, ⌦̄0

A[B)
�

20

!


X

A:A 6=A0,|A|K,A\B=;,K(⌦0,⌦̄0
A[B)1

exp

✓
�nK(⌦0, ⌦̄0

A[B)

2560

◆

+
X

A:A 6=A0,|A|K,A\B=;,K(⌦0,⌦̄0
A[B)>1

exp

✓
�n

2560

◆


|A0|X

j=1

|A0|�jX

i=1

✓
|A0|
j

◆✓
p� |A0|

i

◆
exp

 
�njC̃min

2560

!
+ exp

✓
�n

2560
+ |A0| log p

◆


|A0|X

j=1

exp

 
�njC̃min

2560
+ 2j log p

!
+ exp

✓
�n

2560
+ |A0| log p

◆

 2 exp

 
�nC̃min

2560
+ 2 log p

!
+ exp

✓
�n

2560
+ |A0| log p

◆
�! 0

as n ! 1, provided that |A0| log p
n

 3000�1 and C̃min � 3000 log p
n

.

13



To bound P(Gc), we apply Lemma 3 with ⌫ = min

✓
1

16
p
2�̄max

p
|A0|+|B|

,
q

C̃min

48�̄2
max|A0[B| ,�max(⌃0)

◆

and get

P(Gc)  P
�
kS �⌃

0k1 � ⌫
�
 2 exp

✓
�n

⌫2

9�2
max(⌃

0) + 8⌫�max(⌃0)
+ 2 log p

◆

 2 exp

✓
�n

⌫2

18�2
max(⌃

0)
+ 2 log p

◆
�! 0 ,

provided that C̃min � 2000 �̄
2
max

�
2
min(⌦

0)
(|A0|+|B|) log p

n
and �̄

2
max

�
2
min(⌦

0)
(|A0|+|B|) log p

n
 18000. Combining,

we obtain

P
⇣
b⌦(1) 6= b⌦A0[B

⌘
 exp

 
�nC̃min

2560
+ 2 log p

!
+ exp

✓
�n

2560
+ |A0| log p

◆

+exp

0

BBBBB@
�n

min

 r
min(C̃min ,3/32)
48�̄2

max(|A0|+|B|) ,�max(⌃0)

!2

18�2
max(⌃

0)
+ 2 log p

1

CCCCCA

For P
⇣
b⌦(0) 6= b⌦A0

⌘
, we let B = ; and a similar bound can be established. Moreover, by

Lemma 4, it is easy to see that max(K(⌦0,⌦), K2(⌦0,⌦)) � k⌦0�⌦k2
512 for any ⌦. Conse-

quently, C̃min � Cmin
512 . Thus, the bound in (B.17) is established. This completes the proof.

Lemma 7 Let �k = (�k1, · · · �km) 2 Rm
; k = 1, · · · , n be iid random vectors with Var(�1) =

Im⇥m. If m is fixed, then

n�1k
nX

k=1

�kk22
d�! �2

m
, as n ! 1 . (B.21)

Otherwise, if max
�
m,m2m/n,m3/n,m3m3/2/n2

�
! 0, where mj = max1im E�2j

1i ; j = 2, 3,

then

k
P

n

k=1 �kk22 � nm

n
p
2m

d�! N(0, 1), as n ! 1 . (B.22)
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Proof of Lemma 7: If m is fixed, then (B.21) follows from the central limit theorem and

the continuous mapping theorem.

For (B.22), let �k =
P

k

j=1 �j; k = 1, · · · , n be a partial sum of k iidm-dimensional vectors

�j’s. Next we apply Theorem 18.1 of [1] to show that k�nk22�nm

n
p
2m

! N(0, 1) for triangular

arrays of martingale di↵erences {⌘n,k = k�kk22�k�k�1k22�m

n
p
2m

=
k�kk22�m+2�>

k �k�1

n
p
2m

}. Towards this

end, we verify that

nX

k=1

E
�
⌘2
n,k

|�1, · · · ,�k�1

�
P! 1,

nX

k=1

E|⌘n,k|3 ! 0. (B.23)

For the first condition of (B.23), we compute E and Var of E
�
⌘2
n,k

|�1, · · · ,�k�1

�
. Note that

�1, · · · ,�m are iid vectors with Var(�m) = Im⇥m, E�k�1 = 0, and Ek�k�1k22 = (k � 1)m.

Then, for each k = 1, · · · , n, EE
�
⌘2
n,k

|�1, · · · ,�k�1

�
becomes

(2mn2)�1
⇣
E
�
k�kk22 �m

�2
+ 4E

�
(k�kk22 �m)�k

�>E�k�1 + 4EE
�
(�>

k
�k�1)2 |�1, · · · ,�k�1

�⌘

= (2mn2)�1
⇣
Var(k�kk22) + 4Ek�k�1k22

⌘
= (2mn2)�1

⇣
Var(k�kk22) + 4(k � 1)m

⌘
,

which, after summing over k = 1, · · · , n, leads to

nX

k=1

2(k � 1)

n2
 E

⇣ nX

k=1

E
�
⌘2
n,k

|�1, · · · ,�k�1

�⌘
 mm2

2n
+

nX

k=1

2(k � 1)

n2
,

where Var(k�kk2)  m2m2; k = 1, · · · , n. Consequently,
���E
⇣P

n

k=1 E
�
⌘2
n,k

|�1, · · · ,�k�1

�⌘
� 1

��� 
2
n
+ mm2

2n . Let a = E
�
(k�1k22 � m)�1

�
. Similarly, using an inequality (a1 + a2 + a3)2 

15



3(a21 + a22 + a23) for real numbers aj; j = 1, · · · , 3.

Var
⇣ nX

k=1

E
�
⌘2
n,k

|�1, · · · ,�k�1

�⌘
=

4

m2n4
Var

 
nX

k=1

�
a>

�k�1 + k�k�1k22
�
!

=
4

m2n4
Var

 
nX

k=1

(n� k)
⇣
a>�k + k�kk22

⌘
+ 2

X

k<k0

(n� (k _ k0))�>
k
�k0

!

 12

m2n4

"
Var

 
nX

k=1

(n� k)a>�k

!
+Var

 
nX

k=1

(n� k)k�kk22

!

+Var

 
X

k<k0

(n� (k _ k0))�>
k
�k0

!#
⌘ 12

m2n4

h
T1 + T2 + T3

i
. (B.24)

For T1, note that kak22 
P

m

k=1 E2
�
(k�1k22 �m)�1k

�

P

m

k=1 E
�
(k�1k22 �m)2

�
E�2

1k  m3m2.

Then

Var

 
nX

k=1

(n� k)a>�k

!
=

nX

k=1

(n� k)2E
�
a>�k

�2
=

nX

k=1

(n� k)2
mX

j=1

a2
j
E�2

kj

=
kak22
6

(n� 1)n(2n� 1)  n3m3m2 .

For T2, note that Var (
P

n

k=1(n� k)k�kk22) 
P

n

k=1(n� k)2m2m2 =
1
6(n� 1)n(2n� 1)m2m2.

To bound T3, note that, for k 6= k0 and j 6= j0, E
�
�>
k
�k0�>

j
�j0

�
= I({j, j0} = {k, k0})E

�
�>
k
�k0

�2
=

I({j, j0} = {k, k0})m, yielding that

Var

 
X

k<k0

(n� (k _ k0))�>
k
�k0

!
=
X

k<k0

(n� (k _ k0))2E
�
�>
k
�k0

�2  n4m.

Combining (B.24) with the bounds of T1 � T3, we obtain

Var
⇣ nX

k=1

E
�
⌘2
n,k

|�1, · · · ,�k�1

�⌘
 12 (n3m3m2 + n3m2m2 + n4m)

m2n4
.

Hence the first condition of (B.23) is implied by the assumption that mm2/n ! 0 and
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m ! 1.

For the second condition of (B.23), note that E|⌘n,k|3 = E
⇣��k�kk22 �m+ 2�>

k
�k�1

��3
⌘
is

bounded by

4E
⇣��k�kk22 �m

��3
⌘
+ 16E

⇣���>
k
�k�1

��3
⌘
 E

�
k�kk62

�
+
q

E
�
(�>

k
�k�1)6

�

 m3m3 +
q

(k � 1)3m3m3 + (k � 1)2m3m2m3 + (k � 1)m3m2
3

 m3m3 + k3/2m3/2m1/2
3 + km3/2m1/2

2 m1/2
3 + k1/2m3/2m3.

Summing over k,
Pn

k=1 E
�
|k�kk22�m+2�>

k �k�1|3
�

n3m3/2 is upper bounded by

⇣
nm3m3 + n5/2m3/2m1/2

3 + n2m3/2m1/2
2 m1/2

3 + n3/2m3/2m3

⌘

n3m3/2

=
m3/2m3

n2
+

m1/2
3

n1/2
+

m1/2
2 m1/2

3

n
+

m3

n3/2
! 0 ,

provided that max
�
m2m/n,m3/n,m3m3/2/n2

�
! 0. Thus the second condition in (B.23) is

met. As a consequence of Theorem 18.1 of [1], the desired asymptotic normality is estab-

lished. This completes the proof.

Lemma 8 Let X ⇠ N(0,⌃0) and � = tr(XX>�⌃
0)T ) with T a symmetric matrix. Then

E(�2m)  (2m� 1)! 2m�1
�
E(�2)

�m
for any integer m � 1 . (B.25)

Proof of Lemma 8: As in (B.8) and (B.10), we expand the moment generating func-

tion of �: M�(�) = E exp (��) = �2k
p
⌃0T

p
⌃0k2

F
+ (1/2)

P1
l=3 l

�1�l tr
⇥
(2T⌃

0)l
⇤
for any

|�| < k
p
⌃0T

p
⌃0kF/2. Direct computation of high-order derivatives of M�(�) in � yields

that E(�2m) = (2m � 1)! 22m�1 tr
⇣
(T⌃

0)2m
⌘
for any integer m � 1. An application of

tr
⇣
(T⌃

0)2m
⌘
 k

p
⌃0T

p
⌃0k2m

F
yields that E(�2m)  (2m � 1)! 22m�1k

p
⌃0T

p
⌃0k2m

F
=

(2m� 1)! 2m�1 (E(�2))m. This completes the proof.
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Proof of Lemma 9: Let b�
Ã
= b⌦

Ã
�⌦

0 for any Ã ◆ A0. Applying Lemma 5 to b�
Ã
and

b�A0 , we have that both k b�
Ã
k and k b�A0k tend to zero in probability as n goes to infinity.

Hence, we could assume throughout the proof that max
⇣
k b�

Ã
k , k b�A0k

⌘
 1/2 holds with

probability tending to one. Note that ⌦
0 = (⌃0)�1, and log det(b⌦

Ã
) = log det(Ip⇥p +

b�
Ã
⌃

0) + log det(⌦0). Then

log det(Ip⇥p + b�
Ã
⌃

0)

= log det(Ip⇥p + [⌃0]1/2 b�
Ã
[⌃0]1/2) = tr(log(Ip⇥p + [⌃0]1/2 b�

Ã
[⌃0]1/2))

= tr

 1X

i=1

(�1)i+1

�
[⌃0]1/2 b�

Ã
[⌃0]1/2

�i

i

!
,

= tr
� b�

Ã
⌃

0
�
� 1

2
tr
� b�

Ã
⌃

0 b�
Ã
⌃

0
�
+R1( b�Ã

) , (B.26)

where R1( b�Ã
) =

P1
i=3

(�1)i+1

i
tr
⇣� b�

Ã
⌃

0
�i⌘

and the expansion is valid since k b�
Ã
k  1/2 <

1. As a result,

n�1
⇣
Ln(b⌦Ã

)� Ln(⌦
0)
⌘

=
1

2
tr
� b�

Ã
⌃

0
�
� 1

4
tr
� b�

Ã
⌃

0 b�
Ã
⌃

0
�
� 1

2
tr( b�

Ã
S) +

1

2
R1( b�Ã

)

=
1

2
tr
� b�

Ã
(⌃0 � S)

�
� 1

4
k b�

Ã
k2 + 1

2
R1( b�Ã

). (B.27)

Moreover, using the property of the CMLE, b�
Ã
satisfies a score equation: [�( b�

Ã
+⌦

0)�1+

S]
Ã
= 0. This, in turn, yields that

h
⌃

0 b�
Ã
⌃

0
i

Ã

=
h
R2( b�Ã

) +⌃
0 � S

i

Ã

, (B.28)

where ( b�
Ã
+⌦

0)�1 = ⌃
0�⌃

0 b�
Ã
⌃

0+R2( b�Ã
) is used, andR2( b�Ã

) = ⌃
0
P1

i=2(�1)i
� b�

Ã
⌃

0
�i
.

By the definition of ⌦ and (B.2), (B.28) can be rewritten in a vector form as

2I
Ã,Ã

vec
Ã
( b�

Ã
) = vec

⇣
R2( b�Ã

) +⌃
0 � S

⌘
. (B.29)

Moreover, after taking the inner product with b�
Ã
for both sides of (B.28), we obtain

tr
⇣
b�

Ã
⌃

0 b�
Ã
⌃

0
⌘
= tr

⇣
b�

Ã
R2( b�Ã

)
⌘
+ tr

⇣
b�

Ã
(⇤)

⌘
, (B.30)

where ⇤ = ⌃
0 � S. Hence, combining (B.29) and (B.30) with (B.27) yields that

18



2n�1
⇣
Ln(b⌦Ã

)� Ln(⌦
0)
⌘
=

1

2
tr
� b�

Ã
⇤
�
� 1

2
tr
� b�

Ã
R2( b�Ã

)
�
+R1( b�Ã

)

=
1

2

⇣
vec

Ã
( b�)

⌘>
vec

Ã

⇣
⇤�R2( b�Ã

)
⌘
+R1( b�Ã

)

=
1

4
vec

Ã

⇣
⇤+R2( b�Ã

)
⌘>

I�1
Ã,Ã

vec
Ã

⇣
⇤�R2( b�Ã

)
⌘
+R1( b�Ã

)

=
1

4
vec

Ã
(⇤)>I�1

Ã,Ã
vec

Ã
(⇤)� 1

4
vec

Ã

�
R2( b�Ã

)
�>

I�1
Ã,Ã

vec
Ã

�
R2( b�Ã

)
�
+R1( b�Ã

) .

Similarly,

2n�1
⇣
Ln(b⌦A0)� Ln(⌦

0)
⌘

=
1

4
vecA0(⇤)>I�1

A0,A0 vecA0(⇤)� 1

4
vecA0

�
R2( b�A0)

�
I�1
A0,A0 vecA0

�
R2( b�A0)

�
+R1( b�A0).

Combining, we obtain that

2
⇣
Ln(b⌦Ã

)� Ln(b⌦A0)
⌘

=
n

4
vec

Ã

�
⇤
�>

I�1
B,B

vec
Ã

�
⇤
�

�n

4
vecA0

�
⇤
�>

I�1
A0,A0 vecA0

�
⇤
�
+R( b�

Ã
, b�A0) (B.31)

where

R( b�
Ã
, b�A0) = nR1( b�Ã

)� n

4
vec

Ã

�
R2( b�Ã

)
�>

I�1
Ã,Ã

vec
Ã

�
R2( b�Ã

)
�

�nR1( b�A0) +
n

4
vecA0

�
R2( b�A0)

�>
I�1
A0,A0 vecA0

�
R2( b�A0)

�
(B.32)

is the remainder to be bounded subsequently. For now, we focus on the leading term in the

likelihood ratio expansion. Let � =
p
n vec

Ã

�
⌃

0 � S
�
. Now write I�1

Ã,Ã
as

I�1
Ã,Ã

=

0

B@
JA0,A0 JA0,B

JB,A0 JB,B

1

CA . (B.33)

Note that IA0,A0 = [J�1]A0,A0 =
�
JA0,A0 � JA0,BJ

�1
B,B

JB,A0

��1
. Thus,

n

4
vec

Ã

�
⇤
�>

I�1
Ã,Ã

vec
Ã

�
⇤
�
� n

4
vecA0

�
⇤
�>

I�1
A0,A0 vecA0

�
⇤
�

=
1

4
�>

Ã
I�1
Ã,Ã

�
Ã
� 1

4
�>

A0I�1
A0,A0�A0

=
1

4
�>

Ã
J�

Ã
� 1

4
�>

A0

⇣
JA0,A0 � JA0,BJ

�1
B,B

JB,A0

⌘
�A0

=
1

4

�
JB,A0�A0 + J

Ã\A0,B\A0�B

�>
J�1
A\A0,B

�
J
Ã\A0,A0�A0 + JB\A0,B�B

�

=
1

4
�>

Ã
J
Ã,B

J�1
B,B

J
Ã\A0,A

�
Ã
=

����
1

2
J�1/2
B,B

J
B,Ã

p
n vec

Ã
(⇤)

����
2

2

. (B.34)

This, together with (B.31), implies that

2
⇣
Ln(b⌦Ã

)� Ln(b⌦A0)
⌘
=

����
1

2
J�1/2
B,B

J
B,Ã

p
n vec

Ã
(⇤)

����
2

2

+R( b�
Ã
, b�A0), (B.35)
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Recall from (B.47) that Var
⇣

1
2J

�1/2
B,B

J
B,Ã

p
n vecA(⇤)

⌘
= I|B|⇥|B|, thus by Lemma 7 and

Lemma 8, if |B| is a fixed constant, 2
⇣
Ln(b⌦Ã

) � Ln(b⌦A0)
⌘

P0�! W|Ã\A0| provided that

R( b�
Ã
, b�A0) = op(1); if |Ã\A0| ! 1, (2|Ã\A0|)�1/2

⇣
2
�
Ln(b⌦Ã

)�Ln(b⌦A0)
�
� |Ã\A0|

⌘
P0�!

N(0, 1) provided that R( b�
Ã
, b�A0)/

p
|B| = op(1). Next it remains to prove that the remain-

der term R( b�
Ã
, b�A0) satisfies the aforementioned conditions. Toward this end, we bound

R1( b�Ã
)�R1( b�A0) and vec

Ã

�
R2( b�Ã

)
�
I�1
Ã,Ã

vec
Ã

�
R2( b�Ã

)
�
�vecA0

�
R2( b�A0)

�
I�1
A0,A0 vecA0

�
R2( b�A0)

�

respectively.

For vec
Ã

�
R2( b�Ã

)
�
I�1
Ã,Ã

vec
Ã

�
R2( b�Ã

)
�
, recursively applying kC1C2kF  kC1kFkC2kF

and using the fact that kC1C2kF  �max(C2)kC1kF and kC1C2kF  �max(C1)kC2kF , we

obtain ����vecÃ
✓
⌃

0
⇣
b�

Ã
⌃

0
⌘i
◆����

2


����
p
⌃0

⇣p
⌃0 b�

Ã

p
⌃0

⌘i p
⌃0

����
F

 �max(⌃
0)
���
p
⌃0 b�

Ã

p
⌃0

���
i

F

= �max(⌃
0)k b�

Ã
ki (B.36)

Summing over i yields that
���vecÃ

�
R2( b�Ã

)
����

2


1X

i=2

����vecÃ
✓
⌃

0
⇣
b�

Ã
⌃

0
⌘i
◆����

2

 �max(⌃
0)

1X

i=2

k b�
Ã
ki  2�max(⌃

0)k b�
Ã
k2. (B.37)

Consequently,

vecB
�
R2( b�Ã

)
�
I�1
B,B

vec
Ã

�
R2( b�Ã

)
�

��I�1

B,B

��
opt

���vecÃ
�
R2( b�Ã

)
����

2

2

 ��2
min(⌃

0)
���vecÃ

�
R2( b�Ã

)
����

2

2
 42

0k b�Ã
k4 . (B.38)

Similarly, vecA0

�
R2( b�A0)

�
I�1
A0,A0 vecA0

�
R2( b�A0)

�
 42

0k b�A0k4. Hence,
1

4
vec

Ã

�
R2( b�Ã

)
�
I�1
Ã,Ã

vec
Ã

�
R2( b�Ã

)
�
� 1

4
vecA0

�
R2( b�A0)

�
I�1
A0,A0 vecA0

�
R2( b�A0)

�

 2
0k b�Ã

k4 + 2
0k b�A0k4 (B.39)

For R1( b�Ã
) � R1( b�A0), by Cauchy-Schwartz inequality, we have that tr(

� b�
Ã
⌃

0
�i
) 

k
p
⌃0 b�

Ã

p
⌃0kF

���(
p
⌃0 b�

Ã

p
⌃0)i�1

���
F

 k b�
Ã
ki; i = 2, · · · ,. Hence,

���
1X

i=4

(�1)i+1

i
tr(
� b�

Ã
⌃

0
�i
)
��� 

1X

i=4

i�1k b�
Ã
ki  k b�

Ã
k4

4(1� k b�
Ã
k)

 1

2
k b�

Ã
k4 . (B.40)

Similarly,
���
P1

i=4
(�1)i+1

i
tr(
� b�A0⌃

0
�i
)
���  1

2k b�A0k4. Combining, we have that
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���R1( b�Ã
)�R1( b�A0)

��� 

���tr
⇣� b�

Ã
⌃

0
�3⌘� tr

⇣� b�A0⌃
0
�3⌘���

3
+

k b�
Ã
k4 + k b�A0k4

2
.(B.41)

Let f
Ã
(vec

Ã
(�)) = tr

⇣�
�⌃

0
�3⌘

with vecAc(�) = 0. A Taylor expansion of f
Ã
(vec

Ã
(�))

at vecA0(�)) yields that
1

3

���tr
⇣� b�
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1
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Ã
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⇣
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⌘
(B.42)

where b�⇤ is some convex combination of b�
Ã
and b�A0 and the last equality uses (B.36).

Lastly, we bound
���
p
⌃0( b�
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p
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Ã,Ã
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2
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Ã,Ã
vec

Ã
(⇤+R2( b�Ã
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where ⇤ = ⌃
0 � S. Let J = I�1

Ã,Ã
. An application of an inequality kI�1/2

Ã,Ã
xk22 = x>Jx 

2x>
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Moreover, J�1
B,B

JB,A0 + IB,A0I�1
A0,A0 = 0. Using this, we have that
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This, together with (B.43) and (B.44), implies that
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By (B.3), the covariance matrix of J�1/2
B,B

JB,B vec
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(⇤) is
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By Lemma 3,
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1
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. Using

this and (B.37), we bound (B.46) as follows:
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Let � = max
⇣
k b�

Ã
k, k b�A0k

⌘
. Then combining the above bound with (B.42), we obtain

1

3

���tr
⇣� b�

Ã
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This together with (B.39) and (B.41) implies that the remainder term R( b�
Ã
, b�A0) defined

in (B.32) is bounded by n�2 max

✓
2
0�

2 , Op

✓q
|B| log |B|

n

◆◆
up to some positive constants.

By Lemma 5, we have that �2 = Op

⇣
|Ã| log p

n

⌘
. This together with (B.39) and (B.41) yields

that
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Hence, if |B| is fixed, R( b�
Ã
, b�A0) = op(1), provided that 

2
0|A|2 log2 p

n
! 0; and if |Ã\A0| ! 1,
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R( b�
Ã
, b�A0)/

p
|B| = op(1), provided that 

2
0|Ã|2 log2 p log(|B|)

n
! 0. This completes the proof.

C Proofs of Theorem 3 and 4

Proof of Theorem 3. Let ⇤n(B) be the likelihood ratio test statistic defined in Theorem

1. A measure change from P✓n to P✓0 yields that for any u � 0,

P✓n(⇤n(B) � u) = E✓nI(⇤n(B) � u)
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p
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◆
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where P✓n is the probability measure underHa, Zn = n�1/2 @Ln(✓0)
@✓B

, I is the Fisher information
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in the Gaussian graphical model and linear regression model.

For the Gaussian graphical model, we first verify (C.1). Now let hn =
p
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p
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p
n vecB(⇤). It follows from

the Taylor expansion of log det(·) that
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where we have used (B.26) and

r(⌦n) = n
1X

i=3

(�1)i+1
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p
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By similar calculations as in (B.40), we have that
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Hence, when |B| is fixed and n is large enough, we have that |r(⌦n)|  (h>
n
IB,Bhn)3/2n�1/2 !

0. When |B| ! 1 but |B|3/2/n ! 0, we have that |r(⌦n)|  (h>
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By (B.35), we have that, with probability tending to 1 under P✓0 ,
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p
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Note that Var(vec
Ã
(⇤)) = 4I. Hence, by Lemmas 7 and 8,
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where J = I�1. Therefore,

Z1 ⇠ N(0, I|B|⇥|B|) and Z2 | Z1 = z1 ⇠ N
⇣
J�1/2
B,B

z1 , IB,A0I�1
A0,A0IA0,B

⌘
(C.7)
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where the fact that JB,B = (IB,B � IB,A0I�1
A0,A0IA0,B)�1 is used. Hence, for any ✓j; j 2 Bc,
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where we have used the fact that J�1
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= IB,B � IB,A0I�1
A0,A0IA0,B. Hence, we must have

⇤n(B)
d! kZ1 + bmJ�1/2

B,B
hnk22 with Z1 ⇠ N(0, I|B|⇥|B|) when |B| is fixed. When |B| ! 1,

for any vector v with kvk2 = c|B|1/4 for some constant c, we have that
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2|B|
+
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2|B|1/4

✓
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kvk2|B|1/4 +
kvk2
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◆
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✓
c2p
2
, 1

◆
, (C.8)

because the first term converges to N(0, 1) by CLT, and the second term converges c2/
p
2

to since 2v>Z

kvk2|B|1/4 ! 0 in probability.

Consequently, the local limiting power functions for the proposed CMLR test is

⇡LR(h, ✓Bc) =

8
>><

>>:

P
⇣
kZ + J�1/2

B,B
hnk22 � �2

↵,|B|
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when |B| is fixed,
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Z +
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n J�1

B,Bhnp
2|B|

� z↵

◆
when |B| ! 1,

where ↵ > 0 is the level of significance, Z ⇠ N(0, I|B|⇥|B|) is a multivariate normal random

variable, and JB,B is the asymptotic variance of vecB(b⌦(1)).

To make a comparison between the debiased lasso test proposed in [3], we consider the

case when |B| = 1. Assume that B = {(i, j)}. In this case, the local limiting power functions
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for the proposed method is
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where �2
LR is the asymptotic variance of !̂(1)

ij
. In contrast, The local limiting power functions

for the debiased lasso test proposed in [3] is
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������
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������
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where Z ⇠ N(0, 1) is a standard normal random variable. By applying Corollary 1, we have

that �2
LR < !2

ij
+!ii!jj, which implies that our ⇡LR(h, ✓Bc) � ⇡debias(h, ✓Bc). This completes

the proof.

Proof of Theorem 4. The proof is similar to that of Theorem 3. Again, we first verify

that (C.1) is satisfied for linear regression. Toward that end, let hn =
p
n vecB(�n) with

khnk2 = h. Notice that Ln(✓) = Ln(�, �) = n log(1/
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where ✏ ⇠ N(0, �2In⇥n). Moreover, we have that
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where I = (n�2)�1X>X. Hence (C.1) is satisfied with the remaining term to be exactly 0.

By similar arguments used in Theorem 2 and the fact that k✏k22/n
P�0�! 0, we have that
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the likelihood ratio test statistic is

⇤n(B) = ✏>(PA0[B � PA0)✏+R(✏) (C.12)

where R(✏)
P�0�! 0. Moreover, since the matrix PA0[B �PA0 is idempotent and has rank |B|,
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Note that, under P�0 , we have that
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where A = (a1, . . . ,a|B|)> 2 R|B|⇥n.

Therefore,
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Hence, for any �j; j 2 Bc and any u � 0,
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Hence, we must have ⇤n(B)
d! kZ +AXBhnk22 with Z ⇠ N(0, I|B|⇥|B|) when |B| is fixed.

When |B| ! 1, a similar argument used in Theorem 3 can be applied.

Consequently, the local limiting power functions for the proposed CMLR test is

⇡LR(h, �Bc) =

8
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>>:
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kZ +AXBhnk22 � �2
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(C.16)

where ↵ > 0 is the level of significance, Z ⇠ N(0, I|B|⇥|B|) is a multivariate normal random

variable, and Z1 ⇠ N(0, 1) is a standard normal random variable.

Since AXB has full rank |B|, it is easy to see that when khnk2 ! 1 and |B| is finite,

then ⇡LR(h, �Bc) ! 1; and when khnk22/
p

|B| ! 1 and |B| ! 1, then ⇡LR(h, �Bc) ! 1.

This completes the proof.
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