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Summary

In high-dimensional data analysis, feature selection becomes one effective means for dimension reduction,

which proceeds with parameter estimation. Concerning accuracy of selection and estimation, we study

nonconvex constrained and regularized likelihoods in the presence of nuisance parameters. Theoretically, we

show that constrained L0-likelihood and its computational surrogate are optimal in that they achieve feature

selection consistency and sharp parameter estimation, under one necessary condition required for any method

to be selection consistent and to achieve sharp parameter estimation. It permits up to exponentially many

candidate features. Computationally, we develop difference convex methods to implement the computational

surrogate through prime and dual subproblems. These results establish a central role of L0-constrained and

regularized likelihoods in feature selection and parameter estimation involving selection. As applications of

the general method and theory, we perform feature selection in linear regression and logistic regression, and

estimate a precision matrix in Gaussian graphical models. In these situations, we gain a new theoretical

insight and obtain favorable numerical results. Finally, we discuss an application to predict the metastasis

status of breast cancer patients with their gene expression profiles.

Key Words: Coordinate decent, continuous but non-smooth minimization, general likelihood, graphical

models, nonconvex, (p, n)-asymptotics.

1 Introduction

Feature selection is essential to battle the inherited “curse of dimensionality” in high-

dimensional analysis. It removes non-informative features to derive simpler models for

interpretability, prediction and inference. In cancer studies, for instance, a patient’s gene ex-

pression is linked to her metastasis status of breast cancer, for identifying cancer genes. In a

situation as such, our ability of identifying cancer genes is as critical as a model’s predictive

accuracy, where selection accuracy becomes extremely important to reproducible findings
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and generalizable conclusions. Towards accuracy of selection and parameter estimation, we

address several core issues in high-dimensional likelihood-based selection.

Consider a selection problem with nuisance parameters, based on a random sample Y =

(Y1, · · · , Yn) with each Yi following probability density g(θ0, y), where θ0 = (β0, η0) is a true

parameter vector, β0 ≡ (β0
1 , · · · , β

0
p) = (β0

A0
, 0Ac

0
) and η0 ≡ (η01, · · · , η

0
q ) are the parameters

of interest and nuisance parameters respectively, A0 = {j : β0
j 6= 0} is a set of nonzero

coefficients of β0 with size |A0| = p0, and 0Ac
0
is a vector of 0’s with c denoting the set

complement. Here we estimate (β0, A0), where p may greatly exceed n, and q = 0 is

permitted.

For estimation and selection, a likelihood is regularized with regard to β, particularly

when p > n. This leads to an information criterion:

−L(θ) + λ

p
∑

j=1

I(βj 6= 0), (1)

where L(θ) =
∑n

i=1 log g(θ, Yi) is the log-likelihood based on Y , λ > 0 is a regularization

parameter, and
∑p

j=1 I(βj 6= 0) is the L0-function penalizing an increase in a model’s size.

In (1), when θ = β without nuisance parameters, λ = 1 is Akaike’s information criterion,

λ = logn
2

is Bayesian information criterion [21], among others. In fact, essentially all selection

rules can be cast into the framework of (1).

Regularization (1) has been of considerable interest for its interpretability and computa-

tional merits. Yet its constrained counterpart (2) has not received much attention, which is

−L(θ), subject to

p
∑

j=1

I(βj 6= 0) ≤ K, (2)

where K ≥ 0 is a tuning parameter corresponding to λ in (1). Minimizing (1) or (2) in

θ gives a global minimizer leading to an estimate β̂ = (β̂Â, 0Âc)T , with Â the estimated

A0, where η is un-regularized and possibly profiled out. Note that (1) and (2) may not be
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equivalent in their global minimizers, which is unlike a convex problem.

This article systematically investigates constrained and regularized likelihoods involving

nuisance parameters, for estimating zero components of β0 as well as nonzero ones of θ0.

This includes, but is not limited to, estimating nonzero entries of a precision matrix in

graphical models.

There is a huge body on parameter estimation through L1-regularization in linear regres-

sion; see, for instance, [16] for a comprehensive review. For feature selection, consistency of

the Lasso [25] has been extensively studied under the irrepresentable assumption; c.f., [15]

[33]. Other methods such as the SCAD [6] have been studied. Yet L0-constrained or reg-

ularized likelihood remain largely unexplored. Despite progress, many open issues remain.

First, what is the maximum number of candidate features allowed for a likelihood method to

reconstruct informative features? Results, such as [13], seem to suggest that the capacity of

handling exponentially many features may be attributed primarily to the exponential tail of

a Gaussian distribution, which we show is not necessary. Second, can parameter estimation

be enhanced through removal of zero components of β? Third, can a selection method con-

tinue to perform well for parameters of interest in the presence of a large number of nuisance

parameters, as in covariance selection for off-diagonal entries of a precision matrix?

This article intends to address the foregoing three issues. First, we establish finite-

sample mis-selection error bounds for constrained L0-likelihood as well as its computational

surrogate, given (n, p0, p), where the surrogate–a likelihood based on a truncated L1-function

(TLP) approximating the L0-function, permits efficient computation; see Section 2.1 for a

definition. On this basis, we establish feature selection consistency for them as n, p → ∞,

under one key condition that is necessary for any method to be selection consistent:

Cmin(θ
0) ≥ d0

log p

n
, (3)

where Cmin(θ
0) ≡ inf{θA=((βA,0Ac),η):A 6=A0,|A|≤p0}

h2(θA,θ0)
max(|A0\A|,1) , d0 > 0 is a constant, | · | and \
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denote the size of a set and that of set difference, respectively, h(θ, θ0) = 1
2

( ∫
(g1/2(θ, y)−

g1/2(θ0, y))2dµ(y)
)1/2

is the Hellinger-distance for with respect to a dominating measure µ,

and g(θ, y) is a probability density for Y1. As one consequence, exponentially many candi-

date features p = exp
(

nCmin(θ
0)

d0

)

are permitted for selection consistency with a broad class

of constrained likelihoods. This challenges the well established result that the maximum

number of candidate features permitted for selection consistency depends highly on a like-

lihood’s tail behavior, c.f., [4]. In fact, selection consistency continues to hold even if the

error distribution does not have an exponential tail; see Proportion 1 for linear regression.

Second, sharper parameter estimation results from accurate selection by L0-likelihood and

its surrogate as compared to that without such selection. For feature selection in linear

regression and logistic regression, the optimal Hellinger risk of the oracle estimator, the

maximum likelihood estimate (MLE) based on A0 as if the true A0 were known a priori,

is recovered by these methods, which is of order of
√

p0
n

and is uniform over a certain L0-

band of θ0 excluding the origin. This is in contrast to the minimax rate
√

u log(p/u)
n

with

u ≥ p0 for estimation without feature selection in linear regression [17]. In other words,

accurate selection by L0-likelihood and its surrogate over the L0-band improves accuracy of

estimation after non-informative features are removed, without introducing additional bias

to estimation. Moreover, in estimating a precision matrix in Gaussian graphical models, the

foregoing conclusions extend but with a different rate at
√

p0 log p
n

, where a log p factor is

due to estimation of 2p nuisance parameters as compared to logistic regression. Third, two

difference of convex (DC) methods are employed for computation of (1) and (2), which relax

nonconvex minimization through a sequence of convex problems.

Two disparate applications are considered, namely, feature selection in generalized linear

models (GLMs), as well as estimation of a precision matrix in Gaussian graphical models.

In GLMs, feature selection in nonlinear regression appears more challenging than linear

regression for a high-dimensional problem. In statistical modeling of a precision matrix in
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Gaussian graphical models, two major approaches have emerged to exploit matrix sparsity

by likelihood selection and neighborhood selection. Papers based on these two approaches

include [15] [12] [27] [2] [8] [19] [20] [18], among others. As suggested by [19], existing

methods may not perform well when the dimension of a matrix exceeds the sample size

n, although they give estimates better than the sample covariance matrix. In addition,

theoretical aspects for a likelihood approach remain to be under studied. In these situations,

the proposed method compares favorably against its competitors in simulations, and novel

theoretical results provide an insight into a selection process.

This article is organized as follows. Section 2 develops the proposed method for L0-

regularized and constrained likelihoods. Section 3 presents main theoretical results for se-

lection consistency and parameter estimation involving selection, followed by a necessary

condition for selection consistency. Section 4 applies the general method and theory to fea-

ture selection in GLMs. Section 5 is devoted to estimation of a precision matrix in Gaussian

graphical models. Section 6 presents an application to predict the metastasis status of breast

cancer patients with their gene expression profiles. Section 7 contains technical proofs.

2 Method and computation

2.1 Method

In a high-dimensional situation, it is computationally infeasible to minimize a discontinuous

cost function involving the L0-function in (1) and (2). As a surrogate, we seek a good

approximation of the L0-function by the TLP, defined as J(|z|) = λmin
(

|z|
τ
, 1
)

, with τ > 0

a tuning parameter controlling the degree of approximation; see Figure 1 for a display. This

τ decides which individual coefficients to be shrunk towards zero. The advantages of J(|z|)

are fourfold, although J(z) has been considered in other contexts [9]:

(1) (Surrogate) It performs the model selection task of the L0-function, while providing
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a computationally efficient means. Note that the approximation error of the TLP function

to the L0-function becomes zero when τ is tuned such that τ < min{|β0
k| : k ∈ A0}, seeking

the sparsest solution by minimizing the number of non-zero coefficients.

(2) (Adaptive model selection through adaptive shrinkage) It performs adaptive model

selection through a computationally efficient means when λ is tuned. Moreover, it corrects

the Lasso bias through adaptive shrinkage combining shrinkage with thresholding.

(3) (Piecewise linearity) It is piecewise linear, gaining computational advantages.

(4) (Low resolutions) It discriminates small from large coefficients through thresholding.

Consequently, it is capable of handling many low-resolution coefficients, through tuning τ .

Figure 1 about here

To treat nonconvex minimization, we replace the L0-function by its surrogate J(·) to

construct an approximation of (2) and that of (1):

−L(θ), subject to

p
∑

j=1

J(|βj|) ≤ K, (4)

S(θ) = −L(θ) + λ

p
∑

j=1

J(|βj|), (5)

where (5) is a dual problem of (4). To solve (5) and (4), we develop difference convex

methods for the primal and dual problems, for efficient computation.

2.2 Unconstrained dual and constrained primal problems

Our DC method for the dual problem (5) begins with a DC decomposition of S(θ): S(θ) =

S1(θ)− S2(β), where S1(θ) = −L(θ) + λ
∑p

j=1 J1(|βj |), S2(β) = λ
∑p

j=1 J2(|βj |), J1(|βj |) =

|βj |
τ
, and J2(|βj|) =

|βj |
τ

− max
(

|βj |
τ

− 1, 0
)

. Without loss of generality, assume that −L

is convex in θ; otherwise, a DC decomposition of −L is required and can be treated sim-

ilarly. Given this DC decomposition, a sequence of upper approximations of S(θ) is con-

structed iteratively, say, at iteration m, with ∇S2 a subgradient of S2 in |β|: S(m)(θ) =
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S1(θ)−
(

S2

(
β̂(m−1)

)
+
(
|β| − |β̂(m−1)|

)T
∇S2

(
|β̂(m−1)|

))

, by successively replacing S2(β) by

its minorization, where | · | for a vector takes the absolute value in each component. After

ignoring S2(β̂
(m−1))− λ

τ

∑p
j=1 |β̂

(m−1)
j |I(|β̂

(m−1)
j | > τ) that is independent of θ, the problem

reduces to

S(m)(θ) = −L(θ) +
λ

τ

p
∑

j=1

|βj |I(|β̂
(m−1)
j | ≤ τ). (6)

Minimizing (6) in θ yields its minimizer θ̂(m). The process continues in m until termination

occurs. Our unconstrained DC method is summarized as follows.

Algorithm 1:

Step 1. (Initialization) Supply a good initial estimate θ̂(0), such as the minimizer of S1(θ).

Step 2. (Iteration) At iteration m, compute θ̂(m) by solving (6).

Step 3. (Termination) Terminate when S(θ̂(m−1)) − S(θ̂(m)) ≤ ε, and no components of

β̂(m) is at ±τ . Otherwise, add ε to that components whose absolute value is τ , and go to

Step 2, where ε is the square root of the machine precision. Then the estimate θ̂ = θ̂(m∗),

where m∗ is the smallest index at the termination criterion.

In Algorithm 1, (6) reduces to a general weighted Lasso problem: −L(θ) +
∑p

j=1 λj|βj|,

with λj =
λ
τ
I(|β̂

(m−1)
j | ≤ τ). Therefore any efficient software is applicable.

For (4), we decompose the nonconvex constraint into a difference of two convex functions

to construct a sequence of approximating convex constraints. This amounts to solving the

mth subproblem in a parallel fashion as in (6):

min
β

−L(θ), subject to
1

τ

p∑

j=1

|βj|I(|β̂
(m−1)
j | ≤ τ) ≤ K −

p∑

j=1

I(|β̂
(m−1)
j | > τ). (7)

This leads to a constrained DC algorithm—Algorithm 2 for solving (4) by replacing (5) in

Algorithm 1 by (4).

Algorithms 1 and 2 are a generalization of those in [23] for a general likelihood, where all
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the computational properties there extend to the present situation, including equivalence of

the DC solutions of the two algorithms and their convergence. Next we shall work with (5)

due to its computational advantage. For instance, a coordinate decent method that works

well with (5) breaks down for (4), c.f., [23].

3 Theory

This section presents a general theory for accuracy of reconstruction of the oracle estimator

θ̂ml = (β̂ml, η̂ml) with β̂ml = (β̂ml
A0
, 0A0) given A0, which is the MLE provided that the knowl-

edge about A0 were known a priori. As direct consequences, feature selection consistency

is studied as as well as optimal parameter estimation defined by the oracle estimator. In

addition, a necessary condition for feature selection will be established as well. A parallel

theory for regularized likelihood is similar and thus is omitted.

3.1 Constrained L0-likelihood

In (2), assume that a global minimizer exists, denoted by θ̂L0 = (β̂L0 , η̂L0) with β̂L0 =

(β̂L0

ÂL0
, 0(ÂL0 )c). Write β as (βA, 0|Ac|), with βA being (β1, . . . , β|A|)

T for any subset A ⊂

{1, · · · , p} of nonzero coefficients.

Before proceeding, we define a complexity measure for the size of a space F . The bracket-

ing Hellinger metric entropy of F , denoted by the function H(·,F), is defined by logarithm of

the cardinality of the u-bracketing (of F) of the smallest size. That is, for a bracket covering

S(ε,m) = {f l
1, f

u
1 , · · · , f

l
m, f

u
m} ⊂ L2 satisfying max1≤j≤m ‖fu

j − f l
j‖2 ≤ ε and for any f ∈ F ,

there exists a j such that f l
j ≤ f ≤ fu

j , a.e. P , then H(u,F) is log(min{m : S(u,m)}),

where ‖f‖2 =
∫
f 2(z)dµ. For more discussions about metric entropy of this type, see [14].

Assumption A: (Size of parameter space) For some constant c0 > 0 and any ε
24

< t <

ε ≤ 1, H(t,BA) ≤ c0(log p)
2|A| log(2ε/t), with |A| ≤ p0, where BA = FA ∩{h(θ, θ0) ≤ 2ε} is

a local parameter space, and FA = {g1/2(θ, y) : θ = (β,η),β = (βA, 0)} be a collection of
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square-root densities.

Theorem 1 (Error bound and oracle properties) Under Assumption A, if K = p0, then,

there exists a constant c2 > 0, say c2 =
2
27

1
963

, such that for (n, p0, p),

P (θ̂L0 6= θ̂ml) ≤ exp
(
− c2nCmin(θ

0) + 2 log(p + 1) + 3
))
. (8)

Moreover, under (3) with d0 > max( 2
c2
, (2c0)

1/2c−1
4 log(21/2/c3)), θ̂

L0 reconstructs the oracle

estimator θ̂ml with probability tending to one as n, p → ∞. Three oracle properties hold as

n, p → ∞:

(A) (Selection consistency) Estimator ÂL0 is selection consistent, that is, P (ÂL0 6= A0) → 0.

(B) (Optimal parameter estimation) For θ0, Eh2(θ̂L0, θ0) = (1+o(1))Eh2(θ̂ml, θ0) = O(ε2n,p)

and h2(θ̂L0 , θ0) = Op(ε
2
n,p0,p

), provided that Eh2(θ̂ml, θ0) does not tend to zero too fast in

that c2
2
nCmin(θ

0) + logEh2(θ̂ml, θ0) → ∞, where εn,p0,p is any solution for ε:
∫ 21/2ε

2−8ε2
H1/2(t/c3,BA0)dt ≤ c4n

1/2ε2. (9)

(C) (Uniformity over a L0-band) The reconstruction holds uniformly over B0(u, l), namely,

supθ0∈B0(u,l) P
(

θ̂L0 6= θ̂ml
)

→ 0, where B0(u, l) is a L0-band, defined as {(β, η0) : p0 =

∑p
j=1 I(βj 6= 0) ≤ u, Cmin(θ) ≥ l} with 0 < u ≤ min(n, p), l = d0σ

2 log p
n

, and u <

min(n, p). This implies feature selection consistency supθ0∈B0(u,l) P (ÂL0 6= A0) → 0, and

optimal parameter estimation
sup

θ0∈B0(u,l)
Eh2(θ̂L0 ,θ0)

sup
θ0∈B0(u,l)

Eh2(θ̂ml,θ0)
→ 1, with supθ0∈B0(u,l)Eh2(θ̂ml, θ0) =

O(ε2n,u,p), provided that Eh2(θ̂ml, θ0) does not tend to zero too fast in that c2
2
nCmin(θ

0) +

log supθ0∈B0(u,l)Eh2(θ̂ml, θ0) → ∞.

The L0-method consistently reconstructs the oracle estimator when the degree of sepa-

ration exceeds the minimal level, precisely under (3). As a result, selection consistency is

established for the L0-method. This, combined with that in Theorem 3, suggests that the

L0-method is optimal in feature selection against any method, matching up with the lower
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bound requirement under the degree of separation with respect to (p, p0, n) except a constant

factor d0 > 0 in Theorem 3. Moreover, the optimality extends further to parameter estima-

tion, where sharper parameter estimation is obtained from accurate L0 selection, achieving

the optimal Hellinger risk of the oracle estimator asymptotically. By comparison, such a re-

sult is not expected for L1-regularization. As suggested in [17], selection consistency of Lasso

does not give sharper parameter estimation, where the rate of convergence of a L1-method

in the L2 risk remains to be
√

p0 log(p/p0)
n

in linear regression. This is because a L1-method

is nonadaptive and overpenalizes large coefficients as a result of shrinking small coefficients

towards zero. Similarly, in feature selection in logistic regression, the L0-method is expected

to give rise to better estimation precision than a L1-method, although a parallel result for

a L1-method has not been available. Finally, the uniform result in (C) is over a L0-band

B0(u, l), which is not expected over a L0-ball B0(u, 0) in view of the result of Theorem 3.

3.2 Constrained truncated L1-likelihood

For constrained truncated L1-likelihood, one additional regularity condition–Assumption B

is assumed, which is generally met with a smooth likelihood; see Section 4 for an example.

It requires the Hellinger-distance to be smooth so that the TLP approximation to the L0-

function becomes adequate through tuning τ .

Assumption B: For some constants d1-d3 > 0,

h2(θ, θ0) ≥ d1h
2(θτ+ , θ

0)− d3pτ
d2 , Aτ+ ≡ {j : |βj| ≥ τ), (10)

where θτ+ = (β1I(|β1| ≥ τ), · · · , βpI(|βp| ≥ τ), η1, · · · , ηq).

Theorem 2 (Error bound and oracle properties) Under Assumption A with FA replaced by

{g1/2(θ, y) : θ = (β,η) : β = (βA,βAc), ‖βAc‖ℓ∞ ≤ τ}, say 0 ≤ τ ≤ c
′

ε for some constant

c
′

, and Assumption B, if K = p0 and τ ≤ max(c
′

, (d1Cmin(θ
0)/2pd3)

1/d2), then there exists

a constant c2 > 0, such that for any (n, p0, p),
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P (θ̂T 6= θ̂ml) ≤ exp
(
− c2nCmin(θ

0) + 2 log(p+ 1) + 3
)
. (11)

Moreover, under (3) with sufficiently large constant d0 > 0, θ̂T has the three oracle properties

(A)-(C) of θ̂L0, provided that c2d1
4
nCmin(θ

0)+logEh2(θ̂ml, θ0) → ∞. For (C), τ ≤ ( d1l
2pd3

)1/d2

is required as well as c2d1
4
nCmin(θ

0) + log supθ0∈B0(u,l)Eh2(θ̂ml, θ0) → ∞.

Remark: Constants in Theorem 1 can be made precise. For instance, c2 = 4
27

1
1926

and

d0 > max( 4
c2d1

, (2c0)
1/2c−1

4 log(21/2/c3)).

Theorem 2 says that the oracle properties of the L0-function are attained by its compu-

tational surrogate when τ is sufficiently small.

3.3 Necessary condition for selection consistency

This section establishes the necessary condition (3) by estimating the minimal value d0 in

(3), required for feature selection consistency.

Let K(θ1, θ2) = E log
(
g(θ1, Y )/g(θ2, Y )

)
be the Kullback-Leibler loss for θ1 versus θ2,

where E is taken with regard to g(θ1, Y ). Let γmin(θ
0) ≡ min{|β0

k| : k ∈ A0} > 0.

Assumption C: For a constant r > 0, K(θj , θk) ≤ rγ2
min(β). Here {θj = (βj ,η

0), j =

1, · · · , p} is a set of parameters, where βj =
∑p0

k=1 γminek − γminej; j = 1, · · · , p0, and

βj =
∑p0

k=1 γminek + γminej; j = p0+1, · · · , p, and ej = (0, . . . , 0
︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

p−j−1

)T . Assume that

s ≡ infθ0
Cmin(θ

0)

γ2
min(θ

0)
> 0.

Theorem 3 (Necessary condition for feature selection consistency) Under Assumption C,

for any constant c∗ ∈ (0, 1), any (n, p0, p) with p0 ≤ p/2, and any η0, we have

inf
Â

sup
{β0:Cmin(θ0)=R∗}

P
(

Â 6= A0

)

≥ c∗, (12)

with R∗ = s(1−c∗) log p
4rn

. Moreover,

inf
Â

sup
θ0∈B0(u,l)

P
(

Â 6= A0

)

≥ c∗, as n, p → ∞, (13)
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where u ≤ min(p/2, n), l = d0
log p
n

, and d0 =
(1−c∗)s

4r
.

Theorem 3 says that feature selection inconsistency occurs when d0 < s
4r

in (3). There

the minimal value d0 =
s
4r

yields a requirement for feature selection consistency in (3).

4 Generalized linear models

For GLMs, observations Yi = (Zi,Xi) are paired, response Zi is assumed to follow an

exponential family with density function g(zi; θi, φ) = exp{[ziθi − b(θi)]/a(φ) + c(zi, φ)},

where θi is the natural parameter that is related to the mean µi = E(zi) = b′(θi), and φ is

a dispersion parameter. With a link function g, a regression model becomes ηi = g(µi) =

βTxi. The penalized likelihood for estimating regression coefficient vectors β is −L(β) +

∑p
j=1 J(|βj |;λ, τ), where L(β) =

∑n
i=1[ziµi − b(µi)]/a(φ) + c(zi, φ) is the log-likelihood, and

J(|βj|;λ, τ) =
λ
τ
min(|βj|, τ) is the TLP penalty.

For parameter estimation and feature selection, we apply Algorithm 1, where (6) be-

comes a series of weighted lasso for GLMs, for which some existing routines are applicable,

for simplicity. In implementation, we use the function wtlassoglm() in R package SIS.

Next we examine effectiveness of the proposed method through simulated examples in

feature selection. In linear regression and logistic regression, the Lasso, SCAD [6], SCAD-

OS, TLP and TLP-OS are compared in terms of predictive accuracy and identification of

the true model, where SCAD-OS and TLP-OS are SCAD and TLP with only one iteration

step in the DC iterative process, and SCAD-OS is proposed in [32]. The latter four methods

use the Lasso as an initial estimate.

4.1 Simulations

For simulations predictors Xi’s are iid from N(0,V ), where V is a p× p matrix whose ijth

element is 0.5|i−j|. In linear regression, Zi = βTXi + ǫi, ǫi ∼ N(0, σ2); i = 1, · · · , n, and

random error ǫi is independent of Xi; in logistic regression, a binary response is generated
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from logit Pr(Zi = 1) = βTXi. In both cases, β = (β1, · · · , βp)
T with β1 = 1, β2 = 0.5

and β5 = 0.75; βj = 0 for j 6= 1, 2, 5. This set-up was similar to that considered in [32];

here we examine various situations with respect to p, n. Each simulation is based on 1000

independent replications.

For any given tuning parameter λ, all other methods use the Lasso estimate as an initial

estimate. For each method, we choose its tuning parameter values by maximizing the log-

likelihood based on a common tuning dataset with an equal sample size of the training data

and independent of the training data. This is achieved through a grid search over 21 λ values

returned by glmnet() for all the methods, and additionally over a grid of 10 τ values that

are the 9th-, 19th-, 29th-,· · · , 99th-percentiles of the final Lasso estimate for the TLP.

The model error (ME) is used to evaluate predictive performance of β̂, defined as

ME(β̂) = (β̂ − β0)TV (β̂ − β0), which is the prediction error minus σ2 in linear regres-

sion, corresponding to the test error over an independent test sample of size T = ∞. In

our context, the median ME’s are reported over 1000 simulation replications, due to possible

skewness of the distribution of ME. In addition, the mean parameter estimates of the nonzero

elements of β will be reported, together with the mean true positive (TP) and mean false

positive (FP) numbers: #TP =
∑p

j=1 I(βj 6= 0, β̂j 6= 0) and #FP =
∑p

j=1 I(βj = 0, β̂j 6= 0).

For linear regression, simulation results are reported for the cases of p = 12, 500, 1000,

n = 50, 100, and σ2 = 1 in Table 1. As suggested by Table 1, the TLP performs best: it

gives the smallest estimation and prediction error as measured by the ME, the smallest mean

false positive number (FP) while maintaining a comparable mean number of true positives

(TP) around 3. Most critically, as p increases, the TLP’s performance remains much more

stable than its competitors. On a relative basis, the TLP outperforms its competitors more

in more difficult situations.

For logistic regression, simulation results are summarized for the cases of p = 12, 200, 500

and n = 100, 200 in Table 2. As expected, the TLP continues to outperform other methods
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with the smallest median ME’s. It gives less biased estimates than the Lasso estimates. The

TLP’s superior performance remains strong over other methods, as p increases.

Tables 1 and 2 about here

4.2 Theory for feature selection

This section establishes some theoretical results to gain an insight into performance of the

proposed method in feature selection. Let Y = (Z,X), and g(β, Z) = 1
2
√
πσ

exp(− 1
2σ2 (Z −

βTX)2) and g(β, Z) = pZ(1 − p)1−Z in linear and logistic regression. Assume that βTx =

βT
AxA belongs to a compact parameter space for any model size |A| ≤ p0. In this case,

selection does not involve nuisance parameters, where θ = β. Under (14), we establish

feature selection consistency as well as optimal parameter estimation for the TLP:

Cmin(β
0) = min

A:|A|≤p0,A 6=A0

1

max(|A0 \ A|, 1)

(
β0
A0\A

)T (
ΣA0\A − ΣA0\A,AΣ

−1
A ΣA,A0\A

)
β0
A0\A

≥ d0
log p

n
, (14)

where d0 > 0 is a constant independent of (n, p, p0), and ΣB is a sub-matrix given a subset

B of predictors, of covariance matrix Σ with the jkth element Cov(Xj, Xk), independent of

β0. A simpler but stronger condition can be used for verification of (14):

γ2
min min

A:|A|≤p0,A 6=A0

cmin

(
ΣA0\A − ΣA0\A,AΣ

−1
A ΣA,A0\A

)
≥ d0

log p

n
, (15)

where γmin = γmin(β
0) ≡ min{|β0

k| : β
0
k 6= 0} is the resolution level of the true regression

coefficients, minA:|A|≤p0,A 6=A0 cmin

(
ΣA0\A − ΣA0\A,AΣ

−1
A ΣA,A0\A

)
≥ minB⊃A0:|B|≤2p0 cmin(ΣB),

and cmin denotes the smallest eigenvalue. Note that (14) is necessary for any method to be

selection consistent except constant d0 if minA:|A|≤p0,A 6=A0
cmin

(
ΣA0\A−ΣA0\A,AΣ

−1
A ΣA,A0\A

)
>

0.

Proposition 1 Under (14), the constrained MLE β̂T of (4) consistently reconstructs the

oracle estimate β̂ml. As n, p → ∞, feature selection consistency is established for the TLP
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as well as optimal parameter estimation Eh2(β̂T ,β0) = Eh2(β̂ml,β0) = O(p0
n
) under the

Hellinger distance h(·, ·). Moreover, the results hold uniformly over a L0-band B0(u, l) =

{β0 :
∑p

j=1 I(β
0
j 6= 0) ≤ u, γ2

min(β
0)minB⊃A0:|B|≤2p0 cmin(ΣB) ≥ l}, with 0 < u ≤ min(n, p),

l = d0σ
2 log p

n
, that is, as n, p → ∞,

sup
β0∈B0(u,l)

P
(

β̂T 6= β̂ml
)

→ 0,
supβ0∈B0(u,l)Eh2(β̂T ,β0)

supβ0∈B0(u,l)Eh2(β̂ml,β0)
→ 1,

with supβ0∈B0(u,l)Eh2(β̂ml,β0) = d∗ u
n
for some d∗.

Various conditions have been proposed for studying feature selection consistency in linear

regression. In particular, a condition on γmin is usually imposed, in addition to assumptions

on the design matrix X such as the sparse Riesz condition in [31]. To compare (14) with

existing assumptions for consistent selection, note that these assumptions imply a fixed

design version of (14) by necessity of consistent feature selection. For instance, as showed

in [31], the sparse Riesz condition with dimension restriction and γ2
min ≥ c

′ log(p−u)
n

, required

for the minimum concavity penalty to be consistent, imply (15) with p replaced by p − u

thus (14) when p/u bounded away from 1, where u ≥ p0. Moreover, the number of over-

selected variables is proved to be bounded but may not tend to zero for thresholding Lasso in

Theorem 1.1 of [34], under a restrictive eigenvalue condition [1] and a requirement on γmin.

Finally, in linear regression, only finite variance σ2 is required for the proposed method,

which is in contrast to a commonly used assumption on sub-Gaussian distribution of ǫi.

In conclusion, the computational surrogate–the TLP method indeed shares desirable

oracle properties of the L0-method, which is optimal against any selection method, for feature

selection and parameter estimation.
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5 Estimation of a precision matrix

Given n random samples from a p-dimensional normal distribution Y1, · · · ,Yn ∼ N(µ,Σ),

we estimate the inverse covariance matrix Ω = Σ−1 that is p× p positive definite, denoted

by Ω ≻ 0. For estimation of (µ,Ω), the log-likelihood is proportional to

n

2
log det(Ω)−

1

2

n∑

i=1

(Yi − µ)TΩ(Yi − µ). (16)

The profile log-likelihood for Ω, after µ is maximized out, is proportional to n
2
log det(Ω)−

1
2
tr(SΩ), where Ȳ = n−1

∑n
i=1 Yi and S = n−1

∑n
i=1(Yi−Ȳ )(Yi−Ȳ )T are the corresponding

sample mean and covariance matrix, det and tr denote the determinant and trace. In (16),

the number of unknown parameters p2 in Ω can greatly exceed the sample size n in the

presence of 2p nuisance parameters (µ, {Ωjj : j = 1, · · · , p}), where Ωjk denotes the jkth

elements of Ω. To avoid non-identifiability in estimation, we regularize off-diagonal elements

of Ω in (16) through a nonnegative penalty function J(·) for the p(p−1)
2

parameters of interest:

S(Ω) = log det(Ω)−
1

2
tr(SΩ)−

p
∑

j,k=1,j 6=k

J({Ωjk, j 6= k}). (17)

In estimation, the TLP function J({Ωjk, j 6= k}) = λ
τ
min(|Ωjk|, τ) is employed for both

parameter estimation and covariance selection in (17). Towards this end, we apply Al-

gorithm 1 to solve (6) sequentially, which reduces to a series of weighted graphical lasso

problems, and is solved by taking advantage of existing software. In implementation, we use

R package glasso [8] for (6).

5.1 Simulations

Simulations are performed, where a tridiagonal precision matrix is used as in [7]. In partic-

ular, Σ is AR(1)-structured with its ij-element being σij = exp(−a|si − sj|), and s1 < s2 <
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· · · < sp are randomly chosen: si − si−1 ∼ Unif(0.5, 1), for some a > 0; i = 2, · · · , p. The

following situations are considered: (n, p) = (120, 30) or (n, p) = (120, 200), and a = 0.9 or

a = 0.6, based on 100 replications.

Five competing methods are compared, including Lasso, adaptive Lasso (ALasso), SCAD-

OS and SCAD, and TLP-OS and TLP. ALasso uses weight λ/|β̂
(0)
j |γ , where β̂(0) is an initial

estimate and γ = 1/2 as in [7].

To measure performance of estimator Ω̂, we use the entropy loss and quadratic loss:

loss1(Ω, Ω̂) = tr(Ω−1Ω̂) − log |Ω−1Ω̂| − p, and loss2(Ω, Ω̂) = tr(Ω−1Ω̂ − I)2, as well as

the true positive (TP) and false positive (FP) numbers: #TP =
∑

i,j I(Ωij 6= 0, Ω̂ij 6= 0);

#FP =
∑

i,j I(Ωij = 0, Ω̂ij 6= 0).

Table 3 about here

For small p = 30, TLP and TLP-OS are always among the winners. It is also confirmed

that the one-step approximation to SCAD or TLP gives similar performance to that of the

fully iterated SCAD or TLP, respectively. For large p, to save computing time, as advocated

in [7], we only run SCAD-OS and TLP-OS. In such a situation, an improvement of TLP-OS

over other methods is more substantial for large p = 200 than for small = 30. Overall,

the proposed method delivers higher performance in low-dimensional and high-dimensional

situations, respectively.

5.2 Theory for precision matrix

To perform theoretical analysis, we specify a parameter space Θ in which Ω ≻ 0 with

0 < max1≤j≤p |Ωjj| ≤ M2, cmin(Ω) ≥ M1 > 0, for some constants M1,M2 > 0, independent

of (n, p, p0). Let A = {(j, k) : j 6= k,Ωjk 6= 0} be the set of nonzero off diagonal elements

of Ω, where |A| = p0 is an even number by symmetry of Ω, and Ω depends on A. Results

in Theorem 1 imply that the constrained MLE yields covariance selection consistency under

one assumption:
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Cmin(Ω
0) ≥ d0

log p

n
, (18)

which is necessary for covariance selection consistency indeed for any method, up to constant

d0 when cmin(H) > 0, where d0 > 0 is a constant independent of (n, p, p0), and H =
(

∂2(− log det(Ω))
∂2Ω

)

|Ω=Ω0 is the p
2×p2 Hessian matrix of − log det(Ω), whose (Ωjk,Ωj′k′) element

is tr(Σ0∆jkΣ
0∆j′k′), c.f., [3], ∆jK is a p × p with the jk-element being 1 and 0 otherwise.

Sufficiently, (18) can be verified using

Cmin(Ω
0) ≥ γ2

mincmin(H), (19)

with γmin(Ω
0) ≡ γmin = min{|Ω0

jk| : Ω
0
jk 6= 0, j 6= k}.

Proposition 2 Under (18), the constrained MLE Ω̂T of (4) consistently reconstructs the

oracle estimator Ω̂ml. As n, p → ∞, covariance selection consistency is established for the

TLP as well as optimal parameter estimation Eh2(Ω̂T ,Ω0) = (1 + o(1))Eh2(Ω̂ml,Ω0) =

O(p0 log p
n

), where h2(Ω,Ω0) = 1 −

√

(det(Ω)det(Ω0))1/2

det(Ω+Ω0

2
)

is the squared Hellinger distance for Ω

versus Ω0. Moreover, the above results hold uniformly over a L0-band B0(u, l) = {Ω0 :
∑p

j,k=1,j 6=k I(Ω
0
jk 6= 0) ≤ u, γ2

min(Ω
0)cmin(H) ≥ l}, with 0 < u ≤ min(n, p) and l = d0σ

2 log p
n

,

that is, as n, p → ∞,

sup
Ω0∈B0(u,l)

P
(

Ω̂T 6= Ω̂ml
)

→ 0,
sup

Ω0∈B0(u,l)Eh2(Ω̂T ,Ω0)

sup
Ω0∈B0(u,l)Eh2(Ω̂ml,Ω0)

→ 1,

with sup
Ω0∈B0(u,l)Eh2(Ω̂ml,Ω0) = d∗ u log p

n
for some d∗ > 0.

In short, the TLP method is optimal against any method in covariance selection, permit-

ting p up to exponentially large in the sample size, or p2 ≤ p0 exp
(

n
γ2
mincmin(H)

d0

)

. Moreover,

as a result of accurate selection of this method, parameter estimation can be sharply en-

hanced at an order of
√

p0 log p
n

, as measured by the Hellinger distance, after zero off-diagonal

elements are removed. Note that the log p factor is due to estimation of 2p nuisance parame-
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ters as compared to the rate of
√

p0
n
in logistic regression. In view of the result in Lemma 1,

this result seems to be consistent with the minimax rate
√

log p
n

under the L∞ matrix norm

[20].

6 Metastasis status of breast cancer patients

We apply the penalized logistic regression methods to analyze a microarray gene expression

dataset of [28], where our objectives are (1) to develop a model predicting the metastasis

status, and (2) to identify cancer genes, for breast cancer patients. Among the 286 patients,

metastasis was detected in 106 patients during follow-ups within 5 years after surgery. Their

expression profiles were obtained from primary breast tumors with Affymetrix HG-133a

GeneChips.

In [28], a 76-gene signature was developed based on a training set of 115 patients, which

yielded a misclassification error rate of 64/171=37.4% when applied to the remaining sam-

ples. [29] compared the performance of a variety of classifiers using a subset of 245 genes

drawn from 33 cancer-related pathways: based on a 10-fold cross-validation (CV). Their non-

parametric pathway-based regression method yielded the smallest error rate at 29%, while

random forest, bagging and Support Vector Machine (SVM) had error rates of 33%, 35%

and 42%.

In our analysis, we first performed a preliminary screening of the genes using a marginal

t-test to select the top p genes with most significant p-values, based on the training data for

each fold of a 10-fold-CV. Then the training data were split into two parts to fit penalized

logistic models and to select tuning parameters, respectively. The results were summarized

in Table 3, including the total misclassification errors and average model sizes (i.e. non-zero

estimates) based on 10-fold CV. A final model is obtained by fitting the best model selected

from a 10-fold CV to the entire data set.

With regard to prediction, no large difference is seen among various methods, with
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the error rates ranging from 102/286=35.7% (of TLP and TLP-OS with p = 200) to

118/286=41.3% (of ALasso with p = 200). The TLP performed similar to the TLP-OS,

both were among the winners. In addition, the Lasso gave the least sparse models while the

SCAD gave the most sparse models.

With regard to identifying cancer genes, the Lasso, TLP-OS and TLP yield the same

model, identifying the largest number of cancer genes, whereas the SCAD and SCAD-OS

give the most sparse models with only at most 2 cancer genes, and ALasso only yields 10

cancer genes. Here cancer genes are defined according to the Cancer Gene Database [10].

In summary, the TLP and TLP-OS identify a good proportion of cancer genes and lead

to a model giving a reasonably good predictive accuracy of the metastasis status. In this

sense, they perform well with regard to the foregoing two objectives.

Table 4 about here

7 Appendix

Proof of Theorem 1: The proof uses a large deviation probability inequality of [26] to

treat one-sided log-likelihood ratios with constraints. This enables us to obtain sharp results

without a moment condition on both tails of the log-likelihood ratios.

When K = p0, |Â
L0 | ≤ p0. If Â

L0 = A0, then β̂L0 = β̂ml. Let a class of candidate subsets

be {A : A 6= A0, |A| ≤ p0} for feature selection. Note that A ⊂ {1, · · · , p} can be partitioned

into (A \ A0) ∪ (A0 ∩ A). Let Bkj = {θ = (βA, 0,η) : A 6= A0, |A0 ∩ A| = k, |A \ A0| =

j, (p0 − k)Cmin(θ
0) ≤ h2(θ, θ0)} ⊂ FA; k = 0, · · · , p0 − 1, j = 1, · · · , p0 − k. Note that

Bkj consists of
(
p0
k

)(
p−p0
j

)
different elements A’s of sizes |A0 ∩ A| = k and |A \ A0| = j. By

definition, {θ = (βA, 0,η) : A 6= A0 : Cmin(θ
0) ≤ h2(θ, θ0), |A| ≤ p0} ⊂ ∪p0−1

k=0 ∪p0
j=1 Bkj.

Hence
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P (θ̂L0 6= θ̂ml) ≤ P ∗
(

sup
θ=(β,η):β=(βA ,0),A 6=A0,|A|≤p0

(L(θ)− L(θ̂ml)) > 0
)

≤ P ∗
(

sup
θ=(β,η):β=(βA ,0),A 6=A0,|A|≤p0

(L(θ)− L(θ0)) > 0
)

≤
∑

A⊂{1,··· ,p}:A 6=A0,|A|≤p0

P ∗
(

sup
θ=(β,η):β=(βA ,0)

(L(θ)− L(θ0)) ≥ 0
)

≡ I

where P ∗ is the outer measure and L(θ̂ml) ≥ L(θ0) by definition.

For I, we apply Theorem 1 of [26] to bound each term. Towards this end, we verify the

entropy condition (3.1) there for the local entropy over BA. Note that under Assumption A

ε = εn,p0,p = (2c0)
1/2c−1

4 log(21/2/c3) log p(
p0
n
)1/2 satisfies there with respect to ε > 0, that is,

sup
{0≤|A|≤p0}

∫ 21/2ε

2−8ε2
H1/2(t/c3,BA)dt ≤ p

1/2
0 21/2ε log(2/21/2c3) ≤ c4n

1/2ε2. (20)

for some constant c3 > 0 and c4, say c3 = 10 and c4 =
(2/3)5/2

512
. Moreover, by Theorem 2.6 of

[24],
(
b
a

)
≤ bb+1/2√

2πaa+1/2(b−a)b−a+1/2 ≤ exp((a+ 1/2) log(b/a) + a
)
for any integers a < b. By (3),

Cmin(θ
0) ≥ ε2n,p0,p implies (20), provided that d0 > (2c0)

1/2c−1
4 log(21/2/c3). Using the facts

about binomial coefficients:
∑p0−k

j=0

(
p−p0
j

)
≤ (p − p0 + 1)p0−k and

(
p0
i

)
≤ pi0, we obtain, by

Theorem 1 of [26], that for a constant c2 > 0, say c2 =
4
27

1
1926

, I is upper bounded by

p0−1
∑

k=0

p0−k
∑

j=0

P ∗( sup
θ∈Bkj

(L(θ) − L(θ0)) ≥ 0
)
≤ 4

p0−1
∑

k=0

(
p0

k

)

exp(−c2n(p0 − k)Cmin(θ
0))

p0−k
∑

j=0

(
p− p0

j

)

≤ 4

p0∑

i=1

exp
(

− i
(
c2nCmin(θ

0)− log(p− p0 + 1)− log p0
))

≤ R
(

exp
(
−

(
c2nCmin(θ

0)− log(p− p0 + 1)− log p0
)))

,

where R(x) = x/(1− x) is the exponentiated logistic function. Note, moreover, that I ≤ 1

and log(p− p0 + 1) + log p0 ≤ 2 log(p+ 1)/2 ≤ 2 log p+1
2
. Then

I ≤ 5 exp
(
− c2nCmin(θ

0) + 2 log
p+ 1

2

)
≤ exp

(
− c2nCmin(θ

0) + 2 log(p+ 1) + 3
)
.

Finally, (A) follows from P (ÂL0 6= A0) ≤ P (θ̂L0 6= θ̂ml), (8) and (3) with d0 > 2
c2
, as
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n, p → ∞. For (B), let G = {θ̂L0 6= θ̂ml} and P (G) ≤ 8 exp(−c2nCmin/4) by (8) and (3).

For the risk property, Eh2(θ̂L0, θ0) ≤ Eh2(θ̂ml, θ̂0) +Eh2(θ̂L0 , θ0)I(G) is upper bounded by

Eh2(θ̂ml, θ0) + 4 exp(−c2nCmin/2) = (1 + o(1))Eh2(θ̂ml, θ0),

using the fact that h(θ̂L0 , θ0) ≤ 1. Then (B) is established. Similarly (C) follows. This

completes the proof. 2

Proof of Theorem 2: The proof is basically the same as that in Theorem 1 with a

modification that A is replaced by Aτ+ . Now Bkj = {θτ+ : Aτ+ 6= A0, |A0 ∩ Aτ+ | =

k, |Aτ+ \ A0| = j, (d1(p0 − k)Cmin(θ
0) − d3pτ

d2) ≤ h2(θτ+ , θ
0)}; j = 1, · · · , p0. Then

{θ = (βA, 0,η) : A 6= A0,
∑p

j=1 J(|βj |) ≤ p0, Cmin(θ
0) ≤ h2(θ, θ0)} ⊂ ∪p0−1

k=0 ∪p0−k
j=0 Bkj.

When K = p0,
∑p

j=1 J(|βj|) ≤ p0, implying that |Â+| ≤ p0. If |Â+| = p0, then

∑p
j=1 |βj |I(|βj| ≤ τ) = 0, implying that θ̂T = θ̂ml. Then we focus our attention to the

case of A+ 6= A0. Note that, with θ = (β,η) and β = (βA, 0),

P ∗
(

sup
θ:A 6=A0,

∑p
j=1 J(|βj |)≤p0

(
L(θ)− L(θ0)

)
≥ 0

)

≤

p0∑

j=1

P ∗
(

sup
θ∈Bj

(
L(θ))− L(θ0)) ≥ 0

)

≤ 4

p0−1
∑

k=0

p0−k
∑

j=0

(
p− p0

j

)(
p0
k

)

exp(−c2n(d1Cmin(θ
0)− d3pτ

d2))

≤ 5 exp
(
− (c2d1/2)nCmin(θ

0) + 2 log
p+ 1

2

)
≤ exp

(
− c2nCmin(θ

0) + 2 log(p+ 1) + 3
)
,

provided that τ ≤ (d1Cmin(θ
0)/2pd3)

1/d2 . The rest of the proof proceeds as in the proof of

Theorem 1. This completes the proof. 2

Proof of Theorem 3: The main idea of the proof is the same as that for Theorem 1 of

[23], which constructs an approximated least favorable situation for feature selection and uses

Fano’s Lemma. According to Fano’s Lemma [11], for any mapping T = T (Y1, · · · , Yn) taking

values in S = {1, · · · , |S|}, |S|−1
∑|S|

j=1 Pj(T (Y1, · · · , Yn) = j) ≤
∑

1≤j,k≤|S|
nK(qj,qk)+log 2

|S|2 log(|S|−1)
,

where K(qj , qk) =
∫
qj log(qj/qk) is the Kullback-Leibler information for densities qj versus
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qk corresponding Pj and Pk.

To construct an approximated least favorable set of parameters S for A0 versus Ac
0,

define β to be (γmin1|A0|, 0|Ac
0|). Let S = {θj = (βj,η

0)}pj=0 be a collection of parameters

with components equal to γmin or 0 satisfying that for any 1 ≤ j, j′ ≤ p, ‖βj′−βj‖
2 ≤ 4γ2

min,

as defined in Assumption C. Then for any θj, θk ∈ S, K(θj , θk) ≤ rγ2
min ≤ n r

s
Cmin(θ

0) by

Assumption C.

By Fano’s lemma, |S|−1
∑

j∈S Pj(T = j) ≤ n(r/s)Cmin(θ
0)+log 2

log p
, implying that

sup
{θ:Cmin(θ0)=R∗}

P (Â 6= A0) ≥ 1−
nrCmin(θ

0) + s log 2

s log p
,

bounded below by c∗ with R∗ = s(1−c∗) log p
4rn

. This yields (12). For (13), it follows that R∗ ≥ l

with l = d1
log p
n

and d1 =
(1−c∗)s

4r
, for any θ0 ∈ B0(u, l). This completes the proof. 2

Proof of Proposition 1: We now verify Assumptions A-C. Note that

h2(β,β0) = 2E
(

1− exp(−
1

8
(βTX − (β0)TX)2)

)

for linear regression, and h2(β,β0) is

1

2

(

E(µ1/2((β0)TX)− µ1/2(βTX))2 + (1− µ((β0)TX))1/2 − (1− µ(βTX))1/2)
)

,

for logistic regression, where µ(s) = (1 + exp(s))−1.

Assumption A follows from [14]. Note that A = Aτ+ ∪ Aτ−

2 and
∣
∣∂h

2(β,β0)
∂βj

∣
∣ ≤ 1

2
E(|Xj|),

for 1 ≤ j ≤ p and β ∈ Rp. Thus

|h2(β,β0)− h2(βτ+,β
0)| = τ

∣
∣
∣

∑

j∈Aτ−

∂h2(β,β0)

∂βj

∣
∣
∣
β=β⋆

∣
∣
∣ ≤ 2τ

∑

j∈Aτ+

E(|Xj|) ≤ 2τpmax
j

Σjj.

Then Assumption B is fulfilled with d1 = d2 = 1 and d3 = 2maxj Σjj .

To simplify (3), we derive an inequality through some straightforward calculations: with

β̃ =
(
(βA, 0)− (0,βA0)

)
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Cmin(β
0) ≥ c∗1 min

βA:A 6=A0,|A|≤p0
|A0 \ A|

−1E(βAXA − βA0XA0)
2

≥ c∗1 min
βA:A 6=A0,|A|≤p0

|A0 \ A|
−1β̃TΣA∪A0β̃ ≥ γ2

min min
B:|B|≤2p0,A0⊂B

cmin(ΣB).

for some constant c∗1 > 0, because the derivative of 1 − exp(−1
8
x2) and (1 + exp(x))−1/2

are bounded away from zero under the compactness assumption. This leads to (14). By

Theorem 2, the TLP has the properties (A)-(C) there, through tuning.

Finally, K(βj,βk) ≤ cE(βAj
XAj

− βAk
XAk

)2 ≤ rγ2
min by the compactness assumption,

where r = cmax(Aj ,Ak)E(βAj
XAj

−βAk
XAk

)2. By Theorem 3, (14) except a constant d0 > 0

is necessary for any method to be feature selection consistent. This completes the proof. 2

Proof of Proposition 2: To obtain the desired results, Theorems 1-3 are applied. First

a lower bound of Cmin(θ
0) is derived to simplify (3). Given the squared Hellinger distance

h2(θ, θ0) = 1−

√

(det(Ω)det(Ω0))1/2

det(Ω+Ω0

2
)

e−
1
4
(µ−µ0)T (Ω+Ω0)(µ−µ0), by strong convexity of − log det(Ω),

c.f., [3], for any θ ∈ Θ and a constant c∗ > 0 depending on M1,

−2 log
(
1− h2(θ, θ0)

)
≥ −

1

2

(
log det

(
Ω
)
+ log det

(
Ω0

))
+ log det

(Ω+Ω0

2

)

≥
1

8
tr((Ω∗)−1(Ω−Ω0)(Ω∗)−1(Ω−Ω0)) ≥ c∗|A0 \ A|cmin(H)γ2

min,

where A0 and A are as defined in Section 4.2, and Ω∗ is an intermediate value between Ω

and Ω0; see A.4.3 of [3] of such an expansion. Moreover, Cmin(θ
0) ≥ infΩA:A 6=A0,|A|≤p0 log

(
1−

h2(Ω,Ω0)
)
, yielding (18).

For Assumption A, note that |Ωjk| ≤ (ΩjjΩkk)
1/2 ≤ M2; j 6= k, because Ω ≻ 0 and det(Ω)

is bounded away from zero. To calculate the bracketing Hellinger metric entropy, we apply

Proposition 1 of [22]. Let ΩA be a submatrix, consisting of p0 nonzero off-diagonal elements

of Ω. Note that g(θ,y) of Y1 is proportional to h0(θA,y)
∏

j∈Ac hj(θj , y1), where h0(θA,y) =

(det(ΩA))
n/2 exp(−1

2
(yA − µA)

TΩA(yA − µA)), hj(θj ,y) = det(Ωjj) exp(−
1
2
(yj − µj)

2Ωjj),

and yA and θA are the sub-vectors of y and θ corresponding to ΩA. Then for some constants

kj > 0; j = 1, 2 and any Ω̄,Ω ∈ Θ,
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|g1/2(θ̄,y)− g1/2(θ,y)| ≤ k|g(θ̄,y)− g(θ,y)|

≤ k1k
p−p0
2

(

|h0(θ̄A,y)− h0(θA,y)|+
∑

j∈Ac

|hj(θ̄j ,y)− hj(θj ,y)|
)

.

This implies that H(t,BA) ≤ c0(|A| log(2εp/t)+ log((p−|A|)p/t))) by [14] for some constant

c0, which in turn yields Assumption A. For Assumption B, note that, for j 6= k = 1, · · · , p,

for any θ ∈ Θ,

∣
∣
∂h2(θ, θ0)

∂Ωjk

∣
∣ =

1

4

∣
∣
(
1− h2(θ, θ0)

)
tr
((
2(
Ω+Ω0

2
)−1 −Ω−1

)
∆jk

)∣
∣,

which is upper bounded by
∣
∣ 1

cmin

(
Ω

)
+cmin

(
Ω0
) + 1

4cmin

(
Ω

)
∣
∣ ≤ 2

M1
; j 6= k = 1, · · · , p. With A =

Aτ+ ∪ Aτ−

2 , |h2(θ, θ0) − h2(θτ+ , θ
0)| = τ

∣
∣
∣
∑

j∈Aτ−
∂h2(θ,θ0)

∂Ωjk

∣
∣
∣
Ω=Ω⋆

∣
∣
∣. This implies Assumption

B with d1 = d2 = 1 and d3 =
2
M1

. For Assumption C, note that the Kullback-Leibler for θ0

versus θ is 1
2n
(log det(Ω0)

det(Ω)
+ tr(ΩΣ0) + (µ−µ0)TΩ(µ−µ0)− n), which is upper bounded by

h2(θ, θ0), because the likelihood ratios are uniformly bounded. An application of Taylor’s

expansion as in verification of Assumption A yields that −2 log(1−h2(θ, θ0)) ≤ rγ2
min, where

r = c∗cmax(H), leading to Assumption C.

The results in (18) follow from Theorems 1-3 with εn,p0,p = max((p0 log p)
1/2, (log(p −

p0)p0)
1/2)n−1/2 =

√
p0 log p

n
by solving (9). This completes the proof. 2
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Figure 1: Truncated L1 function Jτ (|βj|) with τ = 1 in (a), and its DC decomposition into
a difference of two convex functions JL and JT,2 in (b).

29



Table 1: Median ME’s, means (SD in parentheses) nonzero coefficients (β1, β2, β5), and true positive
(TP) and false positive (FP) numbers of nonzero estimates, for linear regression, based on 1000
simulation replications.

n p Method ME β1 = 1 β2 = .5 β5 = .75 #TP #FP

50 12 Lasso .129 .91(.17) .41(.18) .60(.16) 2.98(0.14) 3.82(2.39)
SCAD-OS .109 1.02(.19) .40(.22) .68(.18) 2.92(0.27) 2.50(1.97)
SCAD .118 1.04(.20) .39(.24) .71(.18) 2.88(0.32) 2.30(1.90)
TLP-OS .088 1.01(.18) .41(.20) .68(.17) 2.94(0.25) 1.65(2.04)
TLP .090 1.01(.19) .41(.21) .69(.17) 2.92(0.27) 1.57(1.98)

50 500 Lasso .431 .76(.19) .29(.18) .41(.17) 2.90(0.30) 14.7(10.48)
SCAD-OS .327 1.01(.24) .25(.25) .52(.24) 2.70(0.47) 14.81(8.69)
SCAD .301 1.09(.26) .21(.27) .59(.26) 2.53(0.53) 12.25(7.63)
TLP-OS .150 1.02(.21) .39(.26) .67(.22) 2.75(0.45) 4.27(6.86)
TLP .143 1.02(.21) .39(.26) .68(.22) 2.75(0.45) 4.10(6.89)

50 1000 Lasso .501 .72(.19) .28(.18) .37(.18) 2.88(0.33) 17.20(11.49)
SCAD-OS .370 .99(.25) .26(.25) .51(.26) 2.67(0.49) 18.76(9.60)
SCAD .327 1.08(.26) .20(.28) .57(.29) 2.49(0.54) 15.19(8.41)
TLP-OS .182 1.01(.20) .40(.27) .66(.25) 2.72(0.47) 5.43(8.69)
TLP .175 1.02(.20) .40(.27) .66(.25) 2.72(0.47) 5.06(8.30)

100 12 Lasso .063 .94(.12) .44(.13) .65(.11) 3.00(0.00) 3.94(2.42)
SCAD-OS .042 1.01(.12) .45(.14) .72(.11) 2.99(0.08) 2.17(2.04)
SCAD .042 1.02(.13) .45(.15) .74(.11) 2.99(0.09) 2.06(2.01)
TLP-OS .037 1.01(.12) .45(.13) .71(.11) 3.00(0.06) 1.51(1.99)
TLP .036 1.01(.12) .45(.13) .72(.11) 3.00(0.07) 1.46(1.95)

100 500 Lasso .186 .84(.12) .36(.12) .52(.11) 3.00(0.04) 15.61(11.04)
SCAD-OS .118 1.06(.14) .32(.18) .66(.14) 2.94(0.24) 14.92(10.45)
SCAD .121 1.10(.15) .30(.21) .71(.12) 2.89(0.31) 14.20(10.00)
TLP-OS .036 1.01(.12) .47(.14) .72(.11) 2.99(0.12) 3.64(6.57)
TLP .035 1.01(.12) .46(.14) .72(.11) 2.99(0.12) 3.49(6.69)

100 1000 Lasso .211 .83(.13) .34(.13) .51(.12) 3.00(0.06) 18.10(12.50)
SCAD-OS .142 1.06(.15) .30(.19) .66(.15) 2.91(0.29) 19.70(13.35)
SCAD .147 1.10(.15) .27(.22) .72(.14) 2.83(0.38) 18.80(12.74)
TLP-OS .037 1.01(.13) .46(.15) .74(.12) 2.97(0.18) 3.93(7.04)
TLP .037 1.01(.13) .46(.15) .74(.12) 2.97(0.18) 3.80(6.94)

30



Table 2: Median ME’s, means (SD in parentheses) nonzero coefficients (β1, β2, β5), and true positive
(TP) and false positive (FP) numbers of nonzero estimates, for logistic regression, based on 1000
simulation replications.

n p Method ME β1 = 1 β2 = .5 β5 = .75 #TP #FP

100 12 Lasso .388 .80(.27) .35(.25) .49(.27) 2.8(0.4) 3.8(2.2)
SCAD-OS .416 1.03(.37) .39(.36) .61(.40) 2.5(0.7) 1.6(1.9)
SCAD .472 1.10(.41) .38(.39) .67(.44) 2.4(0.7) 1.1(1.9)
TLP-OS .350 .98(.35) .36(.32) .59(.35) 2.7(0.5) 1.8(2.0)
TLP .355 .98(.35) .35(.32) .58(.35) 2.6(0.6) 1.8(2.0)

100 200 Lasso .947 .57(.25) .20(.19) .26(.21) 2.6(0.6) 11.7(7.1)
SCAD-OS .733 .96(.45) .23(.36) .40(.41) 2.0(0.7) 3.1(2.9)
SCAD .827 1.08(.53) .23(.42) .46(.53) 1.7(0.6) 1.1(1.4)
TLP-OS .649 .99(.42) .31(.36) .49(.46) 2.2(0.7) 3.8(5.2)
TLP .664 .99(.43) .30(.37) .48(.47) 2.2(0.7) 3.6(5.2)

100 500 Lasso 1.166 .48(.24) .18(.19) .19(.19) 2.4(0.7) 13.6(9.1)
SCAD-OS .867 .84(.48) .23(.35) .29(.37) 1.8(0.7) 3.9(3.6)
SCAD .847 1.00(.57) .25(.46) .34(.50) 1.6(0.6) 1.3(1.5)
TLP-OS .791 .93(.45) .30(.39) .38(.45) 2.0(0.7) 4.4(6.5)
TLP .811 .94(.46) .29(.40) .38(.45) 2.0(0.7) 4.1(6.4)

200 12 Lasso .203 .87(.20) .39(.20) .57(.20) 3.0(0.2) 4.3(2.4)
SCAD-OS .173 1.06(.25) .44(.28) .72(.26) 2.8(0.4) 1.6(2.2)
SCAD .202 1.08(.25) .45(.30) .77(.25) 2.8(0.5) 1.2(2.1)
TLP-OS .155 1.00(.24) .40(.24) .67(.24) 2.9(0.3) 1.8(2.1)
TLP .157 1.00(.24) .40(.24) .67(.24) 2.9(0.3) 1.8(2.1)

200 200 Lasso .540 .68(.18) .27(.17) .38(.17) 2.9(0.3) 14.1(8.9)
SCAD-OS .271 1.07(.26) .34(.32) .64(.32) 2.6(0.6) 3.2(3.3)
SCAD .262 1.12(.29) .30(.37) .68(.36) 2.3(0.6) 0.8(1.4)
TLP-OS .204 1.04(.25) .40(.29) .68(.27) 2.7(0.5) 3.3(5.5)
TLP .204 1.04(.26) .39(.30) .68(.28) 2.7(0.5) 3.2(5.8)

200 500 Lasso .651 .64(.17) .24(.16) .33(.15) 2.9(0.3) 18.0(10.5)
SCAD-OS .289 1.07(.27) .31(.32) .57(.31) 2.5(0.5) 4.1(4.0)
SCAD .262 1.13(.28) .29(.37) .66(.36) 2.3(0.6) 1.4(1.7)
TLP-OS .231 1.04(.27) .39(.30) .65(.29) 2.7(0.5) 4.1(6.8)
TLP .231 1.04(.27) .38(.30) .65(.30) 2.7(0.5) 3.8(6.8)
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Table 3: Averaged (with SD in parentheses) entropy loss (loss1), quadratic loss (loss2), true pos-
itive (TP) and false positive (FP) numbers of nonzero parameters based on 100 simulations, for
estimating a precision matrix in Gaussian graphical models in Section 4.

Set-up Method loss1 loss2 #TP #FP

p = 30, a = 0.9 Lasso 1.55(.15) 2.96(.42) 88.0(.0) 314.0(41.6)
ALasso 1.02(.15) 1.99(.37) 88.0(.0) 95.5(30.2)
SCAD-OS 0.93(.16) 1.99(.44) 88.0(.0) 126.0(39.4)
SCAD 0.74(.16) 1.60(.42) 87.9(.5) 85.5(18.0)
TLP-OS 0.66(.18) 1.47(.47) 87.9(.5) 28.1(21.4)
TLP 0.63(.18) 1.39(.48) 87.8(.7) 22.4(17.0)

p = 30, a = 0.6 Lasso 1.69(.16) 3.28(.46) 88.0(.0) 342.5(35.5)
ALasso 1.01(.15) 1.97(.37) 88.0(.0) 103.9(17.4)
SCAD-OS 0.75(.14) 1.61(.36) 88.0(.0) 83.8(29.0)
SCAD 0.56(.12) 1.20(.30) 88.0(.2) 26.1(15.0)
TLP-OS 0.57(.14) 1.26(.37) 88.0(.0) 14.7(13.0)
TLP 0.54(.14) 1.18(.36) 88.0(.0) 7.3(10.6)

p = 200, a = 0.9 Lasso 20.16(.50) 34.50(1.85) 597.9(.4) 4847.8(614.7)
ALasso 10.62(.53) 19.64(1.20) 597.3(1.2) 936.8(37.9)
SCAD-OS 11.46(.60) 24.03(1.67) 597.7(.8) 2453.6(251.2)
TLP-OS 6.16(.77) 13.99(2.10) 593.6(3.0) 284.8(158.0)

p = 200, a = 0.6 Lasso 24.86(.54) 46.18(3.72) 598.0(.0) 6161.7(863.0)
ALasso 11.06(.48) 21.53(1.18) 598.0(.0) 1526.1(118.6)
SCAD-OS 9.43(.49) 20.871.77) 598.0(.0) 2754.8(523.6)
TLP-OS 4.45(.48) 9.89(1.29) 597.7(.7) 185.5(76.3)
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Table 4: Analysis results with various numbers (p) of predictors for the breast cancer data. The
numbers of total classification errors (#Err), including false positives (#FP), and mean numbers
of nonzero estimates (#Nonzero) from 10-fold CV, and the total numbers of nonzero estimates and
cancer genes in the final models are shown.

10-fold CV Final model
p Method #Err #FP #Nonzero #Nonzero #Cancer genes

200 Lasso 107 17 40.1 62 13
ALasso 118 27 18.8 39 9
SCAD-OS 107 4 9.5 15 2
SCAD 107 1 4.7 2 0
TLP-OS 102 8 33.5 62 13
TLP 102 8 33.2 62 13

400 Lasso 107 19 46.9 95 26
ALasso 112 19 14.4 32 10
SCAD-OS 108 8 11.1 15 2
SCAD 106 0 4.1 2 0
TLP-OS 106 15 40.1 95 26
TLP 106 14 38.2 95 26
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