
Optimal exact least squares rank minimization ∗

Shuo Xiang1, Yunzhang Zhu2, Xiaotong Shen2 and Jieping Ye1

Summary
In multivariate analysis, rank minimization emerges when a low-rank structure of matrices is desired

as well as a small estimation error. Rank minimization is nonconvex and generally NP-hard, imposing one

major challenge. In this paper, we derive a general closed-form for a global minimizer of a nonconvex least

squares problem, in lieu of the common practice that seeks a local solution or a surrogate solution based on

nuclear-norm regularization. Computationally, we develop efficient algorithms to compute a global solution

as well as an entire regularization solution path. Theoretically, we show that our method reconstructs the

oracle estimator exactly for noisy data. As a result, it recovers the true rank optimally against any method

and leads to sharper parameter estimation over its counterpart. Finally, the utility of the proposed method

is demonstrated by simulations and image reconstruction from noisy background.
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1 Introduction

In multivariate analysis, estimation of lower-dimensional structures has received attention

in statistics, signal processing and machine learning. One type of such a structure is low-

rank of matrices, where the rank measures the dimension of a multivariate response. Rank

minimization approximates multivariate data with the smallest possible rank of matrices. It

has many applications, in, for instance, multi-task learning [4], multi-class classification [5],

matrix completion [8, 16], collaborative filtering [26], computer vision [29, 14], among others.

The central topic this article addresses is least squares rank minimization.

Consider multi-response linear regression in which a k-dimensional response vector zi
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follows

zi = aTi Θ + εi; Eεi = 0, Cov(εi) = σ2Ik×k; i = 1, · · · , n, (1)

where ai is a p-dimensional design vector, Θ is a p × k regression parameter matrix, and

components of εi are independent. Model (1) is commonly used in compressed sensing,

reduces to the linear model when k = 1, and becomes a multivariate autoregressive model

with ai = zi−1. In (1), the rank of Θ, denoted by r(Θ), and can be expressed in a matrix

form

Z = AΘ + e; (2)

where Z = (z1, · · · , zn)T ∈ Rn×k, A = (a1, · · · ,an)T ∈ Rn×p and e = (ε1, · · · , εn)T ∈ Rn×k

are the data, design and error matrices. In (1), we estimate Θ based on n pair observation

vectors (ai, zi)
n
i=1, with a priori knowledge that r(Θ) is low relative to min(n, k, p), where

the number of unknown parameters kp can greatly exceed the sample size n.

Least squares rank minimization, as described, solves

min
Θ

‖AΘ−Z‖2F

s.t. r(Θ) ≤ s,

(3)

where ‖ ·‖F is the Frobenius-norm, that is, the L2-norm of all entries of a matrix, and s is an

integer-valued tuning parameter with 1 ≤ s ≤ min(n, k, p). The problem (3) is nonconvex

and NP-hard [?], which is like the L0-function in feature selection. Therefore an exact global

solution to (3) has not been available as well as its statistical properties, due primary to

discreteness and non-convexity of the rank function.

Estimation under the restriction that r(Θ) = r has been studied when n→∞ with m, p

2



held fixed, see, for example, [1, 2, 13, 23, 21]. For (3), the rank constraint is looser, in which

two major computational approaches have been proposed. The first involves regularization.

A convex envelope of the rank [12] such as the nuclear-norm in (3),is used in a parallel

fashion as the L1 for L0-norm, which can be solved by efficient algorithms [8, 18, 28, 17].

In some cases, the solution of this convex problem coincides with a global minimizer of

(3) under certain isometry assumptions [22]. However, these assumptions can be strong

and difficult to check. Recently, [7] obtained a global minimizer of a regularized version of

(3). The second attacks (3) by approximating the rank iteratively by calculating the largest

singular vectors through greedy search [24], and by singular value projection (SVP) through

a local gradient method [16]. Under weaker isometry assumptions [22, 9, 10], these methods

guarantee an exact solution of (3) but suffer from the same difficulty as the regularization

method [24], although they have achieved promising results on both simulated and real-

world data. Theoretically, some loss error bounds of the first approach are obtained in [20]

under Frobenius-norm, and rank selection consistency is established in [7]. Unfortunately,

to our knowledge, little is known about a solution for (3).

In this paper, we have advanced on two fronts. Computationally, we derive a general

closed-form for a global minimizer of (3) in Theorem 1, and give a condition under which (3)

and its nonconvex regularized counterpart are equivalent with regard to global minimizers,

although these two methods are not generally equivalent. Moreover, we develop an efficient

algorithm for computing an entire regularization solution path at a cost of computing one

solution at one regularization parameter value. Second, we establish optimality for a global

minimizer of (3). In particular, the proposed method is optimal against any method in that

it reconstructs the oracle estimator exactly, thus the true rank, under (1). It is important to

note that this exact recovery result is a much stronger property than consistency, which is

attributed to the discrete nature of the rank as well as tuning parameter s. Such a result may

not share by its regularized counterpart with a continuum tuning parameter. In addition,
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the method enjoys a higher degree of accuracy of parameter estimation than nuclear-norm

rank estimation.

After the first draft of this paper was completed, we were aware that [?] and [?] gave

an expression of Theorem 1. However, neither paper considers computational and statistical

aspects of the solution. Inevitably, some partial overlaps between our Theorem 1 and theirs.

The rest of the paper is organized as follows. Section 2 presents a closed-form solution

to (3). Section 3 gives an efficient path algorithm for a regularized version of (3). Section 4

is devoted to theoretical investigation, followed by Section 5 discussing methods for tuning.

Section 6 presents some simulation results, where several rank minimization methods are

compared. Section 7 concludes. The appendix contains the proof.

2 Proposed method: closed-form solution

This section derives a closed-form solution to (3). One strategy is to reduce (3) to a simpler

problem through the singular value decomposition (SVD) of matrix A and certain properties

of the rank. Before proceeding, we present a motivating lemma, known as the Eckart-Young

theorem [11, 27].

Lemma 1 The best s-rank approximation, in terms of the Frobenius-norm, for a t-rank

matrix Z with t ≥ s, i.e., a unique global minimizer Θ∗ of

min
Θ

‖Θ−Z‖2F

s.t. r(Θ) ≤ s

(4)

is given by Θ∗ = Ps(Z) = UzDsV
T
z , where Ds consists of the largest s singular values of Z

given the SVD of Z = UzDV T
z .
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Intuitively Ps(Z) may be viewed as a projection of Z onto a set of matrices whose rank

is no more than s. Note that (4) is a special case of (3) with matrix A being the identity

matrix. This motivates us to solve (3) through a simpler problem (4).

When A is nonsingular, (3) has a unique global minimizer A−1Ps(Z) by rank preserveness

of any nonsingular matrix in matrix multiplication. When A is singular, assume, without

loss of generality, that r(A) ≥ s, because s ≤ min(n, k, p) in (3). Given SVD of A = UDV T ,

with orthogonal matrices U ∈ Rn×n and V ∈ Rp×p and diagonal matrix D ∈ Rn×p, we have

‖AΘ − Z‖F = ‖UT (AΘ − Z)‖F = ‖DV TΘ − UTZ‖F . This follows from the fact that

the Frobenius-norm is invariant under any orthogonal transformation. Let Y = V TΘ and

W = UTZ. Then r(Y ) = r(Θ). Solving (3) amounts to solving an equivalent form:

min
Y

‖DY −W ‖2F s.t. r(Y ) ≤ s. (5)

Consequently, a global minimizer of (3) becomes V Y ∗, where Y ∗ is a global minimizer of (5).

Next we give a closed form solution Y ∗ of (5).

Theorem 1 Let D, Y , Z and s be as defined. If s ≤ r(A), then a global minimizer of (5)

is given by

Y ∗ =

 D−1r(A)Ps(Wr(A))

a

 , (6)

where Dr(A) is a diagonal matrix consisting of all the nonzero singular value of A, a is any

vector, and Wr(A) consists of the first r(A) rows of W . If s > r(A), simply replace the zero

part below D−1r(A)Ps(Wr(A)) with a specific matrix to make r(Y ∗) to be s. Most importantly,

(5) has a unique global minimizer Θ̂s = V Y ∗ when r(A) = p.

It is important to note that the value of a is irrelevant for prediction, but matters for

parameter estimation. In other words, when r(A) > p, a global minimizer is not unique,
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hence that parameter estimation is not identifiable; see Section 4 for a discussion. For

simplicity, we set a = 0 for Y ∗ subsequently.

In what follows, our estimator is defined as Θ̂s, as well as an estimated rank r̂ = s. Algo-

rithm 1 below summarizes the main steps for computing Θ̂s with regard to s ≤ min(n, k, p).

Algorithm 1 Exact solution of (3)

Input: A, Z, s ≤ r(A)
Output: a global minimizer Θ of (3)

Function LSRM(A, Z, s)

1: if A is nonsingular then
2: Θ = A−1Ps(Z)
3: else
4: Perform SVD on A: A = UDV T

5: Extract the first r rows of UTZ and denote it as Wr(A)

6: Θ = V

[
D−1r(A)Ps(Wr(A))

0

]
7: end if
8: return Θ

The complexity of Algorithm 1 is determined mainly by the most expensive operations–

matrix inversion and SVD, specifically, at most one matrix inversion and two SVDs. Such

operations roughly require a cubic time complexity 1.

3 Regularization and solution path

This section studies a regularized counterpart of (3):

min
Θ

‖AΘ−Z‖2F + λ r(Θ), (7)

1More specifically, for a matrix of dimension n × p, the SVD has a complexity of O(min{s2p, p2n}),
whereas the matrix inversion has a complexity of O(r(A)3), which can be improved to O(r(A)2.807) when
the Strassen Algorithm is utilized.
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where λ > 0 is a continuous regularization parameter corresponding to s in (3), and Θ∗λ is

a global minimizer of (7). The next theorem establishes an equivalence between (7) and (3)

when Θ∗λ is unique, occurring when r(A) = p. Such a result is not generally anticipated for

a nonconvex problem.

Theorem 2 (Equivalence) When p = r(A), (7) has a unique global minimizer. Moreover,

(7) and (3) are equivalent with respect to their solutions. For any Θ∗λ with λ ≥ 0, there exists

1 ≤ s∗ = r(Θ∗λ) such that Θ∗λ = Θ̂s, and vice verse.

Next we develop an algorithm for computing an entire path of regulation solution for

all values of λ with complexity comparable to that of solving (7) at a single λ-value. For

motivation, first consider a special case of the identity A in (7):

g(λ) = min
Θ

‖Θ−Z‖2F + λ r(Θ). (8)

3.1 Monotone property

In (8), r(Θ) decreases as λ increases from 0, where r(Θ) goes through all integer values from

r(Z) down to 0 when λ becomes sufficiently large. In addition, the minimal cost function

value g(λ) is nondecreasing as λ increases. The next theorem summarizes these results.

Theorem 3 (Monotone property) Let r(Z) be r. Then the following properties hold:

(1) There exists a solution path vector S of length r + 2 satisfying the following:

S0 = 0, Sr+1 = +∞, Sk+1 > Sk, k = 0, 1, · · · , r

Θ∗λ = Pr−k(Z), if Sk ≤ λ < Sk+1,

(2) Function g(λ) is nondecreasing and piecewise linear.
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The monotone property leads to an efficient algorithm for calculating the pathwise solu-

tion of (8). Figure 1 displays solution path Θ∗λ as function of λ and the corresponding Θ̂s as

a function of s. The monotone property is evident together with the equivalence property.

g(λ)

0
λ

)( *
Xrank

1S 2S 3S 4S 1S 2S 4S λ
3S

Figure 1: Piecewise linearity of g(·) and the rank of the optimal solution with respect to λ.

3.2 Pathwise algorithm

Through the monotone property, we compute the optimal solution of (8) at a particular λ

by locating λ in the correct interval in the solution path S, which can be achieved efficiently

via a simple binary search. Algorithm 2 describes the main steps.

Algorithm 2 Pathwise solution of (8)

Input: Θ, Z
Output: Solution path vector S, pathwise solution Θ

Function: pathwise(Θ,Z)

1: Initialize: S0 = 0, Θ0 = Z, r = r(Z)
2: Perform SVD on Z: Z = UDV T

3: for i = r down to 1 do
4: Sr−i+1 = σ2

i

5: Θr−i+1 = Θr−i − σiuivTi
6: end for
7: return S, Θ
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Algorithm 2 requires only one SVD operation, hence that its complexity is of same order

as that of Algorithm 1 at a single s-value. When Z is a low-rank matrix, existing software

for SVD computation such as PROPACK is applicable to further improve computational

efficiency.

3.3 Extension to general A

For a general design matrix A, note that ‖AΘ−Z‖2F = ‖DY −W ‖2F = ‖W ′‖2F + ‖DrYr−

Wr‖2F . After ignoring constant term ‖W ′‖2F , we solve minYr(‖DrYr −Wr‖2F + λ r(Yr)).

Note that Dr is nonsingular. Then the problem reduces to the simple case

min
Ŷ

‖Ŷ −Wr‖2F + λ r(Ŷ ),

where Ŷ = DrYr. The solution path can be obtained directly from Algorithm 2.

4 Statistical properties

This section is devoted to theoretical investigation of least squares rank minimization, which

remain largely unexplored, although nuclear-norm regularization has been studied. In par-

ticular, we will reveal what is the best performance for estimating rank as well as the opti-

mal risk for parameter estimation. Moreover, we will establish optimality of the proposed

method. In fact, the proposed method reconstructs the oracle estimator, the optimal one

as if the true rank were known in advance. Here the oracle estimator Θ̂0 is defined as a

global minimizer of minΘ ‖AΘ−Z‖2F subject to r(Θ) = r0, where Θ0 and r0 = r(Θ0) ≥ 1

denote the true parameter matrix and the true rank, respectively. This leads to exact rank

recovery, in addition to reconstruction of the optimal performance of the oracle estimator.

In other words, the proposed method is optimal against any method such as nuclear norm

9



rank minimization.

Given the design matrix A, we study accuracy of rank recovery as well as prediction

and parameter estimation. Let P and E be the true probability and expectation under

Θ0 given A. For rank recovery, we use the metric P(r̂ 6= r0). For prediction and param-

eter estimation, we employ the risk EK(Θ̂s,Θ0) and E‖Θ̂s − Θ0‖2F , respectively, where

K(Θ̂s,Θ0) = (2σ2n)−1
∑n

i=1 ‖aTi (Θ̂s −Θ0)‖22 = (2σ2n)−1‖A(Θ̂s −Θ0)‖F is the Kullback-

Leibler loss, under (3), and ‖ · ‖2 is the L2-norm for a vector. Note that the predictive risk

equals to 2σ2EK(Θ̂s,Θ0) and parameter estimation is considered when it is identifiable, or

r(A) = p.

Now we present the risk bounds under (1) without a Gaussian error assumption.

Theorem 4 Under (1), the oracle estimator is exactly reconstructed by our method in that

Θ̂r0 = Θ̂0 under P, when r0 ≤ r(A). As a result, exact reconstruction of the optimal

performance is achieved by our estimator Θ̂r0. In particular,

EK(Θ̂r0 ,Θ0)

 = r0k
2n

if r0 = r(A)

≤ 2E(
∑r0

j=1 σ
2
j )

n
if r0 < r(A)

and

E‖Θ̂r0 −Θ0‖2F

 = r0k
σ2
min(A)n

if r0 = r(A) = p

≤ E(
∑r0

j=1 σ
2
j )

σ2
minn

if r0 < r(A) = p
,

where σj and σmin > 0 are the jth largest and the smallest nonzero singular value of e? =

UT
r(A)e and n−1/2A, respectively, and Ur(A) denotes the first r(A) rows of U .

Remark: In general, E
∑r0

j=1 σ
2
j ≤ r0Eσ2

1.

Theorem 4 says that the optimal oracle estimator is exactly reconstructed by our method.

Interestingly, the true rank is exactly recovered for noisy data, which is attributed to dis-

creteness of the rank and is analogous to maximum likelihood estimation over a discrete
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parameter space. Concerning prediction and parameter estimation, the optimal Kullback-

Leibler risk is r0k
n

but the risk under the Frobenius-norm is r0k
σ2
minn

. For prediction, only the

effective degrees of freedom
∑r0

j=1 σ
2
j matters as opposed to p, which is in contrast to a rate

r0kp
n

without a rank restriction. This permits p to be much larger than n, or kp >> n. For

estimation, however, p enters the risk through σ2
min, where p can not be larger than n, or

max(k, p) ≤ n.

5 Tuning

As shown in Section 4, exact rank reconstruction can be accomplished through tuning the-

oretically. Practically, we employ a predictive measure for rank selection.

The predictive performance of Θ̂s is measured by MSE(Θ̂s) = n−1E‖Z−AΘ̂s‖2F , which

is proportional to the risk R(Θ̂s) where the expectation E is taken with respect to (Z,A).

To estimate s over integer values in [0, · · · ,min(n, p, k)], one may cross-validate through

a tuning data set, which estimates the MSE. Alternatively, one may use the generalized

degrees of freedom [25] through data perturbation without a tuning set.

ĜDF(Θ̂s) = n−1‖Z −AΘ̂s‖2 + 2n−1
n∑
i=1

k∑
l=1

Ĉov(zil, (aiΘ̂s)l), (9)

where Ĉov(zil, (aiΘ̂s
l) is the estimated covariance between the lth component of zi and

the lth component of aiΘ̂s. In the case that ei in (1) follows N(0, σ2Ik×k), the method of

data perturbation of [25] is applicable. Specifically, sample e∗i from N(0, σ2Ik×k) and let

Z∗ = (1− τ)Z + τZ̃, Ĉov(zil, (aiΘ̂s)l) = τ−1Cov∗(z∗il, (aiΘ̂
∗s)l) where Cov∗(z∗il, (aiΘ̂

∗s)l) is

the sample covariance with the Monte Carlo size T . For the types of problems we consider,

we fixed T to be n.
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6 Numerical examples

This section examines effectiveness of the proposed exact methods, and compares against

the nuclear-norm regularization as well as the SVP method [20]. One benefit of our method

is that it can evaluate the approximation quality of non-exact methods Note that nuclear-

norm regularization is not in the form of (3). For a fair comparison, we run the nuclear-

norm regularization with multiple regularization values and select an suitable regularization

parameter value giving the solution satisfying the rank constraint in (3).

Synthetic Data. Simulations are performed under (2). First, the n× p design matrix A

is sampled, with each entry being iid N(0, 1). Second, the p × k truth Θ0 is generated by

multiplying a p×r matrix and a r×k matrix, each entry of which has a uniform distribution

over (0, 1) and r = r(A). The data matrix Z is then sampled according to (2) with e

following iid N(0, σ2) with σ = 0.5.

For rank recovery and predictive performance, we compute the absolute difference |r̂−r0|

and the MSE ‖A(Θ0− Θ̂r̂)‖2F , averaged over 100 simulation replications on a test set of size

10n, where r̂ is tuned over integers in [0,min(n, p)] by an independent tuning set of size

n. For each competing method, several cases are examined with ??n = 0.5p and ??n =

2p, corresponding to full row rank and full column rank A, respectively. The results are

summarized in Table 1 and displayed in Figure 2.

Table 1: Average recovery error for all three algorithms.

SVP Trace Norm LSRM
n = 2p 7.0780e-5 7.6482e-4 3.6072e-5
n = 0.5p 0.7067 0.7078 0.7067

In the case of n = 2p, the recovery result is significantly better than the other case and

SVP is comparable to the exact LSRM. While in the case of n = 0.5p, all three algorithms

perform nearly identically. Our results verify the effectiveness of the SVP algorithm. Recall
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Figure 2: Recovery error on synthetical data with growing sample size n.

Figure 3: Original MIT logo image.

that SVP is based on the direct rank constraint, which is not guaranteed to find the global

optimum. However our results show that it achieves near-optimal results, demonstrating its

potential in other applications. Our results also imply that nuclear-norm regularization is

more effective for the high-dimensional case where p is larger than n.

MIT logo Recovery. Next, we evaluate the performance of the three algorithms for

recovering the MIT logo image, which naturally yields a low-rank structure and has been

utilized in [22, 16]. The original logo is shown in Figure 3, which is of size 44× 85 and has

rank 7, and we only use the gray image in this experiment.

We generate the design matrix A at random with the sample size of n, ranging from 20

to 80. Gaussian noises with zero mean and 0.5 standard deviation are added to each element

of the sampled data. The results are listed in Figure 4, from which we can observe that: 1)

As expected, for all three algorithms, better reconstruction results can be achieved when the

design matrix becomes larger, i.e., when n = 60 and n = 80. 2) Both SVP and nuclear-norm
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regularization produce comparable results as our method in the case of n = 20 and n = 40.

This is consistent with the observation from the last experiment. We also observe that in

the last two cases (n = 60 and n = 80), the recovery by the exact LSRM is nearly perfect.

This is also consistent with the analysis in Remark 2 of Section 2.

(a) m = 20 (b) m = 40

(c) m = 60 (d) m = 80

Figure 4: Recovery result of the MIT logo with varying sampling size m. From left to right
(for each case of n): SVP; nuclear-norm regularization; our method-LSRM.

Note that in practice the exact rank of the matrix to be estimated is unknown. Next,

we vary the value of the rank r in the constraint and show the trend of the relative error

with a growing sampling size in Figure 5. Again we can see a clear transition of the exact

LSRM around the sampling size of 44, after which a perfect recovery is achieved. In the case

of an under-determined A, i.e., A is not of full column rank, all three algorithms produce

similar recovery result. These results further demonstrate that in the high-dimensional case,

both SVP and the trace norm produce reasonable approximations. Our experimental study

partially validates the current practice of using these approximation algorithms.

7 Conclusion

This paper derives an exact closed-form global minimization for nonconvex least square

rank minimization. In addition, an efficient pathwise algorithm is also developed for its

regularized counterpart. Moreover, we establish optimality of the global solution, against
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Figure 5: Relative recovery error of the MIT logo image with different rank constraints.

any other solutions.

An exact global solution seems rare for nonconvex minimization. However, it is possible

to expand the present work to a general loss function, by solving a sequence of weighted

least squares rank minimization problems iteratively. We will pursue alone this direction for

a general rank minimization problem.

8 Appendix

We first present a technical lemma to be used in the proof of Theorem 4.

Lemma 2 Suppose A and B are two n1 × n2 matrices. Then,

〈A,B〉 ≤ ‖A‖F‖Pr(A)(B)‖F , (10)

where 〈A,B〉 = Tr(ATB) = Tr(BTA), Tr denotes the trace, and r(A) is the rank of A.

Proof of Lemma 2: Let the singular value decomposition of A and B be A = U1Σ1V
T
1

and B = U2Σ2V
T
2 where Ui and Vi, i = 1, 2, are orthogonal matrices, and Σ1 and Σ2

are diagonal matrices with their diagonal elements being the singular values of A and B,

respectively. Then

〈A,B〉 = Tr(V1Σ
T
1U

T
1 U2Σ2V

T
2 ) = Tr(ΣT

1U
T
1 U2Σ2V

T
2 V1) ≡ Tr(ΣT

1UΣ2V
T ),
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where U = UT
1 U2 and V = V T

1 V2 continue to be orthogonal. Let the ordered singular

values of A be σ1 ≥ · · · ≥ σr(A) and B̃ = (b̃ij) = UΣ2V
T . By Cauchy-Schwarz’s inequality,

Tr(ΣT
1UΣ2V

T ) = Tr(ΣT
1 B̃) =

r(A)∑
i=1

σib̃ii

≤

√√√√r(A)∑
i=1

σ2
i

√√√√r(A)∑
i=1

b̃2ii = ‖A‖F

√√√√r(A)∑
i=1

b̃2ii. (11)

Similarly, let the ordered singular values of B be η1 ≥ · · · ≥ ηr(B). Then it suffices to show

that
∑r(A)

i=1 b̃2ii ≤
∑r(A)

i=1 η2i . Assume, without of loss of generality, that ηi = 0 if i > r(B).

Let n = min
(
n1, n2

)
. By Cauchy-Schwarz’s inequality,

r(A)∑
i=1

b̃2ii =

r(A)∑
i=1

( n∑
k=1

uikηkvik
)2 ≤ r(A)∑

i=1

( n∑
k=1

u2ikη
2
k

)( n∑
k=1

v2ik
)
≤

r(A)∑
i=1

( n∑
k=1

u2ikη
2
k

)
=

n∑
k=1

η2k
( r(A)∑
i=1

u2ik
)
≤

r(A)∑
k=1

η2k,

where the last step uses the fact that
∑r(A)

i=1 u2ik ≤ 1 and
∑n

k=1

∑r(A)
i=1 u2ik =

∑r(A)
i=1

∑n
k=1 u

2
ik ≤

r(A). A combination of the above bounds lead to the desired results. This completes the

proof.

Proof of Theorem 1: First partition D and W as follows:

D =

 Dr(A) 0

0 0

 , W =

 Wr(A)

W ′

 ,
then

DY −W =

 Dr(A)Yr(A)

0

−
 Wr(A)

W ′

 =

 Dr(A)Yr(A) −Wr(A)

−W ′

 .
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Evidently, only the first r(A) rows of Y are involved in minimizing ‖DY −W ‖22, which

amounts to computing the global minimizer Y ∗r(A) of arg minYr(A)
‖Dr(A)Yr(A) −Wr(A)‖2F .

Then Y ∗r(A) = D−1r(A)Ps(Wr(A)) by non-singularity of Dr(A) and Lemma 1 with s ≤ r(A).

For s > r(A), recall that, only the upper part of Y ∗ is relevant in minimizing (5). The

result then follows. This completes the proof.

Proof of Theorem 2: For any Θ∗λ with λ > 0, let s∗ = r(Θ∗λ). Next we prove by

contradiction that Θ∗λ = Θ̂s∗ . Suppose Θ∗λ 6= Θ̂s∗ . By uniqueness of Θ̂s∗ given in Theorem

2 and the definition of minimization, ‖AΘ̂s∗ − Z‖2F < ‖AΘ∗λ − Z‖2F . This, together with

r(Θ̂s∗) = r(Θ∗λ), implies that ‖AΘ̂s∗ − Z‖2F + λr(Θ̂s∗) < ‖AΘ∗λ − Z‖2F + λr(Θ∗λ). This

contradicts to the fact that Θ∗λ is minimized. This establishes the result. The converse can

be proved similarly using the proof of Theorem 3. This completes the proof.

Proof of Theorem 3: We prove the first conclusion by constructing such a solution path

vector S. Let S0 = 0, Sr+1 = +∞. Define Sk for 1 ≤ k ≤ r as the solution of equation:

‖Pr−k+1(Z)−Z‖2F + Sk(r − k + 1) = ‖Pr−k(Z)−Z‖2F + Sk(r − k).

It follows that

Sk = ‖Pr−k(Z)−Z‖2F − ‖Pr−k+1(Z)−Z‖2F =
r∑

j=r−k+1

σ2
j −

r∑
j=r−k+2

σ2
j = σ2

r−k+1. (12)

where σj is the jth largest non-zero singular value of Z. By (12), Sk is increasing. In

addition, by definition of Sk and Sk+1, whenever λ falls into the interval [Sk,Sk+1), r(Θ
∗)

for a global minimizer Θ∗ of (8) would be no more than r− k and larger than r− k− 1. In

other words, Θ∗λ is always of rank r−k and is given by Pr−k(Z). Therefore, the constructed

solution path vector S satisfies all the requirements in the theorem.
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Moreover, when Sk ≤ λ < Sk+1,

g(λ) = ‖Pr−k(Z)−Z‖2F + λ r(Pr−k(Z) = ‖Pr−k(Z)−Z‖2F + (r − k)λ. (13)

Since Pr−k(Z) is independent of λ, g(λ) is a nondecreasing linear function of λ in each

interval [Sk,Sk+1). Combined with the definition of the solution path vector S, we conclude

that g(λ) is nondecreasing and piecewise linear with each element of S as a kink point, as

shown in Figure 1. This completes the proof.

Proof of Theorem 4: The proof uses direct calculations.

First we bound the Kullback-Leibler loss. By Theorem 1, AΘ̂r0 = Ur(A)Pr0(Wr(A)),

with Wr(A) = Dr(A)

(
V TΘ0

)
r(A)

+
(
UTe

)
r(A)

. It follows from that orthogonal matrices are

invariant under ‖ · ‖F that

‖AΘ̂r0 −AΘ0‖2F = ‖Ur(A)Pr0(Wr(A))−UDV TΘ0‖2F

= ‖Ur(A)Pr0(Wr(A))−Ur(A)Dr(A)

(
V TΘ0

)
r(A)
‖2F = ‖Pr0(Wr(A))−Dr(A)

(
V TΘ0

)
r(A)
‖2F

= ‖Pr0
(
Dr(A)

(
V TΘ0

)
r(A)

+
(
UTe

)
r(A)

)
−Dr(A)

(
V TΘ0

)
r(A)
‖2F ,

= ‖Pr0(B + e?)−B‖2F ,

where B = Dr(A)

(
V TΘ0

)
r(A)

with rank r(B) ≤ r0, e? =
(
UTe

)
r(A)

. By definition of

Pr0(B + e?),

‖Pr0(B + e?)−B − e?‖2F ≤ ‖B −B − e?‖2F = ‖e?‖2F ,

which implies that,

‖Pr0(B + e?)−B‖2F ≤ 2〈Pr0(B + e?)−B, e?〉 ≤ 2‖Pr0(B + e?)−B‖F‖Pr0(e?)‖F ,
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where the last inequality follows from Lemma 2. Thus,

‖Pr0(B + e?)−B‖2F ≤ 4‖Pr0(e?)‖2F = 4

r0∑
j=1

σ2
j . (14)

The risk bounds then follow.

Second we bound ‖Θ̂r0 −Θ0‖2F , which is equal to

‖V

 D−1r(A)Pr0(Wr(A))

0

−Θ0‖2F = ‖

 D−1r(A)Pr0(Wr(A))

0

− V TΘ0‖2F

= ‖D−1r(A)Pr0(Wr(A))− (V TΘ0)r(A)‖2F + ‖(V TΘ0)r(A)c‖2F

≤ 1

σ2
minn

‖Pr0(Wr(A))−Dr(A)(V
TΘ0)r(A)‖2F + ‖(V TΘ0)r(A)c‖2F ,

where σr(A)(n
−1/2A) = n1/2σmin. If p = r(A), then the last term vanishes. Thus ‖Θ̂r0 −

Θ0‖2F ≤ 1
σ2
r(A)

n
‖Pr0(Wr(A))−Dr(A)(V

TΘ0)r(A)‖2F ≤
4
∑r0

j=1 σ
2
j

σ2
minn

.

Finally, if r(A) ≥ r0, E‖Θ̂r0 − Θ0‖2F ≤ 4
σ2
r(A)

E
(∑r0

j=1 σ
2
j

)
and E‖AΘ̂r0 − AΘ0‖2F ≤

4E
(∑r0

j=1 σ
2
j

)
. In particular, if r(A) = r0, E‖Θ̂r0−Θ0‖2F = 1

σ2
min

r0k
n

and E‖AΘ̂r0−AΘ0‖2F =

r0k
n

.

References

[1] Anderson, T.W. (1951). Estimating linear restrictions on regression coefficients for mul-

tivariate normal distributions. Annals of Mathematical Statistics, 22, 327-351.

[2] Anderson, T.W. (1999). Asymptotic distribution of the reduced rank regression esti-

mator under general conditions. Ann. Statist., 27, 1141-1154.

[3] Aharon, M., Elad, M. and Bruckstein, A. (2009). An algorithm for designing overcom-

plete dictionaries for sparse representation, IEEE Transactions on Signal Processing,

19



11(54), 4311-4322.

[4] Argyriou, A., Evgeniou, T. and Pontil, M. (2007). Multi-task feature learning, Advances

in neural information processing systems, 19, 41-41.

[5] Amit, Y., Fink, M., Srebro, N. and Ullman, S. (2007). Uncovering shared structures

in multiclass classification, Proceedings of the 24th Annual International Conference on

Machine learning, 17–24.

[6] Bai, Z.D. (1999) Methodologies in spectral analysis of large dimensional random matri-

ces, A review. Statistica Sinica, 9, 611-677.

[7] Bunea, F., She, Y., and Wegkamp, M. (2011). Optimal selection of reduced rank esti-

mators of high-dimensional matrices. Ann. Statist., 39, 1282-1309.

[8] Cai, J.F., Candès, E.J. and Shen, Z., (2008). A singular value thresholding algorithm

for matrix completion. Arxiv preprint arXiv:0810.3286.

[9] Candès, E.J. and Recht, B. (2009). Exact matrix completion via convex optimization,

Foundations of Computational Mathematics, 9(6), 717–772. Springer.

[10] Candes, E.J. and Plan, Y. (2009). Matrix completion with noise. Arxiv preprint

arXiv:0903.3131.

[11] Eckart, C. and Young, G. (1936). The approximation of one matrix by another of lower

rank. Psychometrika, 1(3), 211–218. Springer.

[12] Fazel, M., Hindi, H. and Boyd, S.P. (2001). A rank minimization heuristic with appli-

cation to minimum order system approximation. American Control Conference, 2001.

Proceedings of the 2001, 6, 4734–4739.

20



[13] Izenman, A.J. (1975). Reduced-rank regression for the multivariate linear model. J.

Multi. Analy., 5, 248262.

[14] Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., and Ma, Y. (2010). Robust recovery of subspace

structures by low-rank representation. Arxiv preprint arXiv:1010.2955.

[15] Liu, J. and Ye, J. (2009). Efficient euclidean projections in linear time. Proceedings of

the 26th Annual International Conference on Machine Learning, 657–664.

[16] Jain, P., Meka, R. and Dhillon, I. (2010). Guaranteed rank minimization via singular

value projection, Advances in Neural Information Processing Systems, 23, 937–945.
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