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ABSTRACT
Displaying sponsored ads alongside the search results is a key mon-
etization strategy for search engine companies. Since users are
more likely to click ads that are relevant to their query, it is cru-
cial for search engine to deliver the right ads for the query and the
order in which they are displayed. There are several works investi-
gating on how to learn a ranking function to maximize the number
of ad clicks. However, this ranking optimization problem is dif-
ferent from algorithmic search results ranking in that the ranking
scheme must take received revenue into account in order to make
more profit for the search engines. In this paper, we address a new
optimization problem and aim to answer the question: how to con-
struct a ranking model that can deliver high quality ads to the user
as well as maximize search engine revenue? We introduce a novel
tradeoff method from machine learning perspective, and through
this method we have the privilege of choosing a tradeoff parame-
ter to achieve highest relevance ranking or highest revenue ranking
or the tradeoff between them. The algorithms are built upon the
click-through log data with real ad clicks and impressions. The
extensively experimental results verify that the proposed algorithm
has the property that the search engine could choose a proper pa-
rameter to achieve high revenue(income) without losing to much
relevance.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval

General Terms
Algorithms, Design, Performance, Economics, Experimentation.

Keywords
Sponsored search, revenue optimization, ranking, machine learn-
ing.
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The practice of sponsored search advertising, where the paid ad-
vertisements appear alongside web search results, is now one of
the largest sources of revenue for search engine companies. When
a user types a query, search engine delivers a list of ads that are
relevant to the query adjacent to or above the search results pages.
Such ads are called sponsored ads. When a user clicks on a ad,
he/she is taken to the landing page of the advertisement. Under the
Pay per click (PPC) advertising model, such click generates a fixed
amount of revenue to search engine, where the fixed amount is the
bidding price of that ad (in this article we do not consider the effect
of generalized second price auction on search engines’ actually re-
ceived revenue). Thus, the total revenue generated by a particular
ad to search engine is the number of clicks multiplied by the cost
per click (CPC). The CPC has the form of a bid and is established
through generalized second price auction. In this paper, we restrict
ourselves to CPC billing, which means search engine is paid every
time when the ad is clicked by a user. All primarily search engines
such as Google, Yahoo and Microsoft use this model.

When a user types a query, the search engine delivers several
ads that have high possibilities of being clicked by that user. The
search engine will receive more clicks if better matched ads are
delivered. Thus, high accuracy of delivering the most preferred
ads to each user will help search engine maximize the number of
clicks. Previous works addressing this problem mainly focused on
improving the ad matching relevance in sponsored search [10, 4,
2]. However, learning such a function to maximize the number of
clicks is not exactly what the search engines wanted.

The ultimate goal of search engine is to find an optimal ranking
scheme which can maximize the total revenue. Specifically, be-
sides the number of clicks, an extremely important factor, which
substantially influences the total revenue, is the bidding price of
each ad. In [6], the author state why should take the advertisers’
bidding prices into account when constructing the ranking function
to maximizing the total revenue. Their work indicate that search
engine would place the ads in sponsored results that not only are
relevant to the user’s query, but also have potential to increase more
revenue. In this paper, we introduce a novel tradeoff methods from
machine learning perspective, and with it you have the privilege of
choosing a tradeoff parameter to achieve highest relevance ranking
or highest revenue ranking or whatever between them. The algo-
rithms are built upon the click-through log data with real ad clicks
and impressions.

The remainder of the paper is organized as follows. In section
2 we formally introduce the revenue optimization problem in [6]
and introduce the click-through log. Section 3 introduces a tradeoff

approach to learning from click-through data for sponsored search.
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Section 4 describes twelve basic features extracted for investiga-
tion. Section 5 displays the the experimental results and the last
section conclude the paper.

2. RELATED WORKS
In recent years, it attracts more attentions to predict if an ad is

likely to be clicked and how search engine produces an optimal list
of ads. The related works on sponsored search advertisement can
generally be categorized into three approaches. The first approach
applied learning to rank algorithms to optimize the ad relevance
[10, 11, 3], and their objective is to maximize the number of clicks.
If the ranking function can accurately model the user click decision
and reach to the relevance accuracy close to 100%, this approach
also leads to the revenue maximization. However, as two situations
mentioned above, the real case is more complicated. In order to
take the revenue into consideration, the second approach combines
revenue and relevance through either a form of linear combination
[11] or multiplying the relevance score by the bidding price [2].
The methods under this approach are heuristic so that it is not easy
to find the optimal parameters. Especially when the number of tun-
ing parameters is many, the expense of heuristic parameter tuning
becomes infeasible since the computational complexity increases
exponentially as the number of parameters increases. The third ap-
proach decomposes the expected revenue we aim to maximize into
two parts, i.e., CTR (click-through rate) and the bidding price. Sev-
eral algorithms are proposed to estimate the CTR value for an ad
with high precision (low variance)[5, 13, 12, 7]. The CTR value
is an absolute measurements between a query and an ad. The as-
sumption of this approach, as indicated in [7], is that there is an
intrinsic relevance of an ad, which independent of the context of
the user’s query. Thus, the ads with high absolute CTR value many
not be relevant to a particular user’s query. In summary, the first
approach only produces the results with high relevance accuracy.
The second and third approaches use the two steps procedure to
optimize revenue instead of relevance. Although they can generate
better revenue, they always lose much relevance accuracy.

However, in the previous work [6], we solve these problems by
constructing some promising algorithms which aim to maximiz-
ing the total revenue. In this paper, we further introduce a tradeoff

parameter which can be adjusted by search engines according to
their preference between relevance or revenue. So our algorithm
are based on similar assumptions with [6]: (1) A click can only
serve as an indication that an ad is more relevant than the ads that
are not clicked in the same ranking list, but not as an absolute indi-
cation of the ad relevance. (2) To avoid the positional bias, we only
choose the first three ads in the ad list alongside the search results
from the click-through data.

3. REVENUE OPTIMIZATION PROBLEM

3.1 Click-through Data
Each record in the ad click-through data is the quadruple 〈q, Adq(p),

cq(p), rq(p)〉, consisting of the query q, the ad Adq(p) at the position
p, the binary variable cq(p) encoding the click information, and the
bidding price rq(p) for this ad. More specifically, when a user types
in a particular query q, p ∈ N is the position of ad within the dis-
playing ads list. Adq(p) refers to the pth ad in the ads list, cq(p) = 1
if and only if Adq(p) has been clicked by that user. A typical ex-
ample is shown in Table 1. The column “revenue” indicates the
bidding price of the corresponding ad. We use the click-through
data as in this format throughout the paper. Several ad pairs are
constructed for each ranking list. Table 1 displays the result of

such ad pairs constructed from click-through data in Table 1. In the
column “label”, +1 indicates that the user prefers the first ad to the
second one in the ad pair.

Table 1: Example of the Click-through Data
queries ads pos click revenue ads pair label

ad1 1 X 4
=⇒

(ad1,ad2) +1
query1 ad2 2 3

ad3 3 X 1 (ad3,ad2) +1
ad1 1 2

=⇒

(ad1,ad2) −1
query2 ad2 2 X 5

ad3 3 4 (ad3,ad2) −1
ad1 1 6

=⇒

(ad1,ad3) −1
query3 ad2 2 7 (ad2,ad3) −1

ad3 3 X 4
ad1 1 2

=⇒

(ad1,ad2) −1
query4 ad2 2 X 9

ad3 3 4 (ad3,ad2) −1

3.2 Problem Formulation
Our aim is to maximize the expected revenue for search engine.

Suppose Q is the set of total queries collected from search engine,
then the available data is represented as:

{〈q, Adq(p), cq(p), rq(p)〉}q∈Q (1)

Based on a fixed ranking function R(·), defined as

R(·) : {〈q, Adq(p)〉}nq
p=1 −→ {1, 2, . . . , nq}, (2)

where nq is the number of ads in the ads list corresponding to the
query q, we can rank the ads lists for all queries in Q. Here we
assume that there are no ties in the rank mapping, i.e., the ranking
function R(·) is bijective. Thus for each query q, the ranking func-
tion R(·) is equivalent to a set of permutations σq(·) on {1, 2, . . . , nq}

(q ∈ Q) in the way that

R
(
〈q, Adq(p)〉

)
= i⇐⇒ σq(p) = i, (p, i = 1, . . . , nq, q ∈ Q). (3)

According to the above denotations, we define two important
scores: the revenue score and the relevance score.

Definition 1. Given the evaluation set {〈q, Adq(p), cq(p), rq(p)〉}q∈Q
and a fixed learned function R(·), the revenue score #Revenue is:

#Revenue =

∑
q∈Q cq(σ−1

q (1))rq(σ−1
q (1))∑

q∈Qmaxp∈{1,...,nq}{rq(p)cq(p)}
. (4)

σ−1
q (1) returns the original position in the ads list whose ad is ranked

on the first position by the ranking model. Thus, cq(σ−1
q (1))rq(σ−1

q (1)) =

rq(σ−1
q (1)) is the received revenue for search engine. From this defi-

nition, if the ad ranked on the first position is actually clicked by the
user, then the bidding from the clicked ad is assumed to be received.
Otherwise, if a clicked ad is not ranked on the first position, we lose
the revenue that ad generates (i.e., cq(σ−1

q (1))rq(σ−1
q (1)) = 0, no

revenue received). The revenue score is the revenue we actually re-
ceive divided by the largest possible revenue (

∑
q∈Qmaxp∈{1,...,nq}{rq(p)cq(p)})

we could receive. Therefore, in order to maximize the search en-
gine revenue, the revenue score acts as the criteria of both optimiz-
ing and evaluating the ranking model.

Definition 2. Given the evaluation set {〈q, Adq(p), cq(p), rq(p)〉}q∈Q
and a fixed learned function R(.), the relevance score #Relevance is:

#Relevance =

∑
q∈Q cq(σ−1

q (1))∑
q∈Qmaxp∈{1,...,nq}{cq(p)}

=

∑
q∈Q cq(σ−1

q (1))

#Q
. (5)
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(a) Learning for high relevance

(b) Learning for high revenue

Figure 1: Two examples of the ranking function (a) The rank-
ing with high relevance but low revenue; (b) The ranking with
lower relevance but higher revenue.

∑
q∈Q cq(σ−1

q (1)) is the number of the first ranked ad that is also
clicked by users. This number divided by the total number of
queries is the relevance score, which is similar to the ad ranking
accuracy used in [4].

We use the data in Table 1 as an example, and it is clear that the
largest possible revenue we could receive will be 4+5+4+9 = 22. If
a ranking model produces the first position ad as ad3, ad2, ad1 and
and2 respectively, then the totally received revenue is 1+5+0+9 =

15 and the final revenue score is 15
22 . Accordingly, the relevance

score is 1+1+0+1
4 = 0.75.

After introducing these definitions, the revenue optimization can
be formulated as two major problems: (1) What ranking strategy
we develop in order to maximize the revenue score as well as pre-
serve the relevance score; (2) Which features that best captures the
user’ click behavior and achieves high revenue score.

The revenue score reflects the purpose of maximizing search en-
gine revenue, while the revenue score only reflects the users’ rel-
ative preference. A learned ranking function may have higher rel-
evance score but still lead to lower revenue. We expect that an
appropriate ranking function which takes revenue into account can
produce higher revenue even if it sacrifices the correctness of pre-
diction. Figure 1 illustrates an example of this case. In Figure (b),
the ranking function reaches to 25% relevance score, but the re-
ceived revenue is 9. However, in Figure 1(a), the ranking function
reaches to 50% relevance score, but the revenue is only 5 or 8. It
seems that the revenue optimization contradicts the relevance opti-
mization. However, it is not always true. In Figure 1(a), the ranking
function reaches to 50% accuracy if either Ad1

1 or Ad1
3 is predicted

as the clicked ad. If Ad1
1 is ranked first, the received revenue is 5.

On the other hand, if Ad1
3 is on the first, better revenue is received,

i.e., 8. Thus, we can receive 3 more bidding revenue but not lose
the relevance. In this paper, one important issue in developing new
ranking model is to maximize the revenue score and simultaneously
avoid losing the relevance score.

4. LEARNING MODELS
We first introduce a learning to rank algorithm similar to [9]

which aims to achieve the highest relevance score. Then give a brief
review of our work [6] which aims to maximizing the total revenue

for the search engines. And finally we’ll combine these two ob-
jective function to a new objective function through a parameter µ.
Optimizing this objective function lead to our new tradeoff model.

4.1 Learning to Rank Methods
Throughout this section, we adopt the pairwise learning paradigm.

Suppose for each query-ad pair (q, Adq(p)), it corresponds to a fea-
ture vector ~xq(p) ∈ Rk. Pairwise learning methods essentially en-
code the users’ preference information (the click information in this
paper) through a function f (·, ~w) : Rk −→ R as:

f (~xq(p(1)), ~w) > f (~xq(p(2)), ~w)⇐⇒ (cq(p(1)) = 1) ∧ (cq(p(2)) = 0)
(6)

where ~w ∈ Rk, p(1), p(2) ∈ {1, . . . , nq}. If f is a linear transformation
on Rk, i.e., f (~x, ~w) = 〈~w, ~x〉, then (6) is equivalent to:

〈~w, ~xq(p(1)) − ~xq(p(2))〉 > 0⇐⇒ (cq(p(1)) = 1) ∧ (cq(p(2)) = 0) (7)

Based on (7), pairwise learning casts the ranking problem as a clas-
sification task, where the samples are from:

S = {~xq(p(1)) − ~xq(p(2)), cq(p(1)) − cq(p(2))}

p ∈ Q, p(1), p(2) = 1, . . . , nq, cq(p(1)) , cq(p(2)) (8)

where cq(p(1)) − cq(p(2)) = 1 or −1 corresponding to labels. To
simplify the notation, we use the following set S̃ to represent S

S̃ = {~xi
(1)
− ~xi

(2)
, ci}

N
i=1 (9)

where ci ∈ {+1,−1} is the class label and N is the number of pairs
in (8). We introduce two pairwise learning methods which use
the same procedure to optimize a solution ~w∗. However, two ap-
proaches of deriving the final ranking function from the learned
function f (~w∗, ~x) are different.

Learning to rank algorithms have been investigated extensively,
and we only give a brief description. In order to be consistent to
the second algorithm, we use the logistic regression algorithm to
learn the optimal ~w. The learning problem is to solve the following
convex optimization:

min
~w
{

N∑
i=1

log[1 + exp(−ci〈~w, ~xi
(1)
− ~xi

(2)
〉)] + λ||~w||2} (10)

where λ is the regularization parameter whose value is specified
in advance. We call this method RankLogistic. (Compared to
RankSVM [8], the only difference is that it uses the logistic re-
gression algorithm). Suppose that ~w∗log is the optimal weights. Ac-
cordingly, we arrange the samples ~xq(p)∀p in decreasing order as

f (~xq(l(1)
q ), ~w∗log) > f (~xq(l(2)

q ), ~w∗log) > . . . > f (~xq(l(nq)
q ), ~w∗log) (11)

Our ranking functions σq are

σ−1
q (p) = l(p)

q , p = 1, . . . , nq, q ∈ Q (12)

which determines our final ranking function R(·) according to (3).

4.2 Revenue Direct-Optimization
Adopting the same terminology in [?], [6] formulate the revenue

optimization problem as maximizing the empirical revenue Rev(~w)

Rev(~w) =
∑
q∈Q

nq∑
p=1

rq(p)cq(p)I{mini,p{ f (~w,~xq(p))− f (~w,~xq(i))}>0} (13)

Then they assume f (~w, ~x) is linear in w and x and approximate
this loss by a convex one, and finally aims to maximize the follow-
ing convex programming problem:
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L(~w) = λ||~w||2 + (14)∑
q∈Q

nq∑
p=1

rq(p)cq(p)
∑
i,p

log{1 + exp[−(〈~w, ~xq(p)〉 − 〈~w, ~xq(i))〉]}

Compared to the logistic loss function, the above loss function has
a set of weights r(1)

i , which corresponds to the bidding of those
clicked ads. Thus if all of them equal to 1, then the loss in (??) is
exactly the same as the loss in (10). In this case, the loss (10) treats
all the potential errors of training samples equally important. How-
ever, the new loss in (??) incorporates the bidding as the weight into
the loss function thus intensifies those ads with larger bidding. This
also enables us to use the logistic regression package after revising
the initial training data set.

4.3 Trade-off learning models
The above two models have totally two different objective. Specif-

ically, one is aiming to achieve highest relevance for the purpose
of maximizing the receiving clicks. The other is aiming to maxi-
mize the total revenue. In this section we do a convex combination
of this two objective function to let the combination parameter for
your adjustment.

In this section, we aims to construct a relevance-revenue trade-
off model. This can be achieved by optimizing the relevance objec-
tive with a revenue constrain, say the total revenue is no larger than
a predetermined value l. This is equivalent to maximize

λ||~w||2 +
∑
q∈Q

nq∑
p=1

cq(p)
∑
i,p

log{1 + exp[−〈~w, ~xq(p) − ~xq(i)〉]} (15)

under the following constrain:∑
q∈Q

nq∑
p=1

rq(p))cq(p)
∑
i,p

log{1 + exp[−〈~w, ~xq(p) − ~xq(i)〉]} > l (16)

And this constrained optimization problem can be transformed
to its equivalent form:

L(~w) = λ||~w||2 + (17)∑
q∈Q

nq∑
p=1

(1 + µrq(p))cq(p)
∑
i,p

log{1 + exp[−〈~w, ~xq(p) − ~xq(i)〉]}

where µ is depend solely on l and serve as to strike a balance
between revenue and relevance.

The trade-off objective function becomes: The gradient of L(~w)
is

∇L(~w) = 2λ~w + (18)∑
q∈Q

nq∑
p=1

(1 + µrq(p))cq(p)
∑
i,p

e−〈~w,~xq(p)−~xq(i)〉(~xq(p) − ~xq(i))

1 + e−〈~w,~xq(p)−~xq(i)〉

Using this objective and the its gradient, we resort to quasi-
Newton methods to optimize this objective. And the resulting opti-
mal parameter ~w(µ) as a function of µ give us a series of models -
they put different importance on revenue and relevance with differ-
ent µ as their argument.

5. FEATURES
We totally extract 12 features to represent each query and ad pair

(see Table 2). These features can be separated into four categories:
the low-level relevance features, the high-level relevance features,
the CTR features and some other features such as the bidding price

and the match type between the input query and the advertiser’s
bidding keywords. There are four match type values indicating ex-
act match, broad match, phrase match and smart match.

The low-level relevance features include TF(term frequency), TF
* IDF(inverse document frequency) [1], and edit distance. The term
frequency is the summation of the number of times each query term
appears in the ad title and description. Inverse document frequency
is a balance factor to evaluate how important a term is to an ad in
the advertisement corpus. We compute the edit distances between
each query term and the displayed url and take the largest as the
edit distance value. The high-level relevance features include the
outputs from the Okapi BM25 [14] and LMIR (language models
for information retrieval) [15] ranking algorithms which measure
the relevance between query and either ad title or ad description. In
particular for LMIR, there are several smoothing methods such as
Dirichlet, Jelinek-Mercer, absolute discounting and etc. We adopt
the Dirichlet smoothing in this paper.

Ad CTR is a statistical measurement whose value is computed by
the number of ad clicks divided by the total number of ad impres-
sions. If one ad’s CTR is larger than another ad’s CTR, this ad has
higher probability to be clicked. The ad CTR value is an absolute
indication of the ad popularity, which is independent to the input
query. The estimation of ad CTR often has high variance, espe-
cially for new ads whose number of ad impressions is small. Since
new ads have little chance to be seen by users, their CTR values are
likely to zero. However, these new ads cannot be judged as unpop-
ular ads. As a result, we cannot treat new ads with little number
of ad impressions the same as old ads whose number of ad impres-
sions is large. The details on how to handle the old ads and new
ads separately are described in the experimental part. Similarly,
we calculate the CTR value for advertiser account and advertising
campaign. Each advertiser account corresponds to multiple adver-
tising campaigns and each advertising campaign includes multiple
ads.

6. EXPERIMENTAL RESULTS

6.1 Data Set
We collect three months click-through log data with ad clicks and

impressions. After randomly sampling across the overall log data
and filtering out the query whose returned ads number is less than
3, we totally have 10 million queries and each query corresponds
to a list of first three ads in the ad list alongside the search results.
We use 80% records in the training and the left 20% records in the
testing. Since the collected data samples are adequate enough in
terms of 12 features, cross validation is not applied.

Table 2: A list of extracted features in the representation of
each query and ad pair.

TF
low level TF*IDF

edit distance
Relevance BM25 of title

high level BM25 of description
LMIR of title

LMIR of description
ad CTR

CTR compaign CTR
account CTR

Others bidding price
match type
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Table 3: Revenue score and relevance score comparisons
Feature Set 9 features 12 features

Relevance Score Revenue Score Relevance Score Revenue Score
Learning to rank (Baseline 1) 0.5461 0.4092 0.6154 0.4935

Revenue Direct-Optimization (RDO) 0.4891 0.4899 0.5899 0.5312

The estimation of the CTR features is only reliable for “old”
ads with large impression number, hence, we split the experimental
evaluation into two parts. In the first part, we exclude the CTR fea-
tures and use other 9 features as the feature representation. In this
case, all of the training data are used to learn a ranking model and
all of the testing data are used to evaluate the revenue and relevance
score. In the second part, in order to make use of the CTR features,
we only select those ads with at least 100 impressions, where the
impression number is counted in the training data. We denote these
ads set as S CTR. For a query one of whose returned ad is not in
S CTR, this query and all its returned ads will not be included. After
choosing the “old” ads from the training and testing data, we can
build and evaluate a ranking model based on 12 features.

6.2 Algorithm Comparisons
In the experiments, we first consider the first two methods. The

first one is learning to rank introduced in Section ??. The second
one is revenue direct optimization. We use the same ads to train
the ranking model in both 9 feature and 12 feature representations.
Some previous works on the CTR prediction have developed new
features which can boost the estimation performance. However,
the CTR prediction is still a challenge work and this paper does
not explore advanced features on this point. We only use 12 basic
features in order to be consistent to other methods.

Table 3 illustrates the revenue and relevance score comparisons
among these two methods in two different feature representations.
Since learning to rank directly optimizes the relevance, it reaches
highest relevance scores in both 9 features and 12 features. How-
ever, the revenue scores from learning to rank are lower. On the
contrary, the revenue direct-optimization (RDO) approach always
achieves the highest revenue scores, which has relative 19.7% rev-
enue improvement in 9 features and relative 7.3% revenue improve-
ment in 12 features compared with learning to rank. As indicated in
(??), RDO directly takes more emphasis on the bidding price in the
ranking function. Parameter tuning procedure were stated in detail
in [6].

Figure 2: Revenue and relevance trade-off graph in 9 features
data

Figure 3: Revenue and relevance trade-off graph in 12 features
data

The newly proposed trade-off methods aims to introducing a
trade-off parameter to adjust any degree of importance you may
want to put on relevance or revenue component. Figure [[?]] and
Figure [[?]] shows the trade-off graph when the trade-off param-
eter λ = {0, 0.05, 0.1, ..., 0.95, 1}. We can see the for most of the
time, the trade-off larger λ gives us larger revenue score and smaller
λ gives us larger relevance score, as we expected. Also, we ob-
serve that when we sacrifice the relevance score a little bit, the
revenue score might increase substantially and vise versa. This
phenomenon suggest that search engines should choose a optimal
value in (0, 1) for λ rather than go to two extremes. A proper choice
may deliver high relevant ads to search users and still lead to high
revenue income for search engines.

7. CONCLUSIONS
In this paper we investigate a novel approach to learning and

evaluating sponsored search ranking systems using real clickthrough
log data. By optimizing the corresponding objective functions, we
may reach an appropriate balance between achieving highest rev-
enue and also high relevance. Previous works investigate on how to
estimate the relevance scores for each sponsored ads. Giving high
ranking to those ads with high relevance score will fulfill search en-
gine user’s satisfaction, thus has much potential to attract more user
clicks which may ultimately generate business transactions. How-
ever, under Pay Per Click system, optimizing the sponsored search
by delivering the most relevant ads is not equivalent to maximizing
search engine’s total revenue. In our previous paper, our proposed
novel method, revenue post-optimization , aims to maximize the
total revenue. This approach is similar to previous works [5, 7, 12,
13], since they all try to directly combine some relevance score and
the revenue score in a two way procedure that might maximize the
revenue. However, previous works using some heuristic combina-
tion cannot guarantee the solution is optimal in any sense. Instead,
through estimating a set of probabilities to the ads in the same
list, the revenue post-optimization method is optimal in decision-
making when the aim is to maximize the revenue.
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However, all such direct relevance and revenue maximization ap-
proaches have the problem of losing the ads quality in high rank-
ing positions. We then propose another trade-off ranking scheme
which not only can achieve the high revenue but also avoid losing
the quality of returned ads. And we observe that when we sacri-
fice the relevance score a little bit, the revenue score might increase
substantially and vise versa. This phenomenon suggest that search
engines should choose a optimal value in (0, 1) for λ rather than
go to two extremes. A proper choice may deliver high relevant
ads to search users and still lead to high revenue income for search
engines. In our future works, we will continue the revenue opti-
mization works from the direction of exploring more features. As
suggested in this paper, more CTR and relevance features should
be investigated to further improve the revenue score. And also, we
will further explore how to choose the trade-off parameter λ, or
more ambitiously, how we could construct an ideal criterion which
can tell us what kind of trade-off is optimal to the search engines in
more longer term.
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