Mail:
Dept. of Chemistry & Biochemistry
The Ohio State University
151 W. Woodruff Ave.
Columbus, OH 43210
Office:
412 CBEC
Email:
herbert@
chemistry.ohio-state.edu
Publications — John M. Herbert
Jump to:
[2024]
[2020]
[2016]
[2012]
[2008]
[2004]
For citation data, see
Google Scholar
- 176.
Extended symmetry-adapted perturbation theory (XSAPT):
A cubic-scaling platform for computing accurate intermolecular interaction energies and
ab initio energy decomposition analysis.
J. M. Herbert, M. Gray, K.-Y. Liu, and K. Carter-Fenk.
To be published in Computational Methods for the Analysis of Non-Covalent Interactions,
a volume of Struct. Bond. (2025).
[ChemRxiv]
- 175.
Revisiting the half-and-half functional.
M. Gray, A. Mandal, and J. M. Herbert.
J. Phys. Chem. A (in press).
[DOI]
(Special issue: Mark A. Johnson Festschrift)
- 174.
The fallacy of "treating all students the same".
J. M. Herbert and N. M. Dickson-Karn.
Inside Higher Ed (March 20, 2025).
[link]
- 173.
Untangling sources of error in the density-functional many-body expansion.
D. R. Broderick and J. M. Herbert.
J. Phys. Chem. Lett. 16, 2793–2799 (2025).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 172.
Simplified tuning of long-range corrected time-dependent density functional theory.
A. Mandal and J. M. Herbert.
J. Phys. Chem. Lett. 16, 2672–2680 (2025).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 171.
Testing a heterogeneous polarizable continuum model against exact Poisson boundary conditions.
P. E. Bowling, M. Gray, S. K. Paul, and J. M. Herbert.
J. Chem. Theory Comput. 21, 1722–1738 (2025).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 170.
Substituent and heteroatom effects on π–π interactions:
Evidence that parallel-displaced π-stacking is not driven by quadrupolar electrostatics.
B. Schramm, M. Gray, and J. M. Herbert.
J. Am. Chem. Soc. 147, 3243–3260 (2025).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
[Supp. Info. 3]
- 169.
Quick-and-easy validation of protein–ligand binding models using
fragment-based semiempirical quantum chemistry.
P. E. Bowling, D. R. Broderick, and J. M. Herbert.
J. Chem. Inf. Model. 65, 937–949 (2025).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
[Supp. Info. 3]
- 168.
Convergent protocols for computing protein–ligand interaction energies using
fragment-based quantum chemistry.
P. E. Bowling, D. R. Broderick, and J. M. Herbert.
J. Chem. Theory Comput. 21, 951–966 (2025).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 167.
Delocalization error poisons the density-functional many-body expansion.
D. R. Broderick and J. M. Herbert.
Chem. Sci. 15 19893–19906 (2024).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
(Included in RSC's most popular physical and theoretical papers of 2024)
- 166.
Importance of orbital invariance in quantifying electron–hole separation
and exciton size.
J. M. Herbert and A. Mandal.
J. Chem. Theory Comput. 20, 9446–9463 (2024).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
(ACS Editors' Choice for Oct. 16, 2024)
- 165.
Fact-checking the "politicization" of scientific funding.
J. M. Herbert. Chronicle of Higher Education (October 24, 2024).
[link]
[PDF]
- 164.
Comment on "Benchmarking basis sets for density functional theory thermochemistry
calculations: Why unpolarized basis sets and the polarized 6-311G family should be avoided".
M. Gray, P. E. Bowling, and J. M. Herbert.
J. Phys. Chem. A 128, 7739–7745 (2024).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 163.
Assessing the domain-based local pair natural orbital (DLPNO)
approximation for non-covalent interactions in sizable supramolecular complexes.
M. Gray and J. M. Herbert.
J. Chem. Phys. 161, 054114:1–19 (2024).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
[Supp. Info. 3]
- 162.
Benchmarking charge-transfer excited states in TADF emitters:
ΔDFT outperforms TD-DFT for emission energies.
T. Froitzheim, L. Kunze, S. Grimme, J. M. Herbert, and J.-M. Mewes.
J. Phys. Chem. A 128, 6324–6335 (2024).
[DOI]
[PDF]
[Supp. Info.]
(Special issue: Gustavo Scuseria Festschrift)
- 161.
A new parameterization of the DFT/CIS method with applications to core-level spectroscopy.
A. Mandal, E. J. Berquist, and J. M. Herbert.
J. Chem. Phys. 161, 044114:1–15 (2024).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
[Supp. Info. 3]
- 160.
Eliminating imaginary vibrational frequencies in quantum-chemical cluster
models of enzymatic active sites.
P. E. Bowling, S. Dasgupta, and J. M. Herbert.
J. Chem. Inf. Model. 64, 3912–3922 (2024).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 159.
Density functional theory for van der Waals complexes: Size matters.
M. Gray and J. M. Herbert.
Annu. Rep. Comput. Chem. 20, 1–61 (2024).
[DOI]
[PDF]
- 158.
Water-mediated charge transfer and electron localization in a Co3Fe2
cyanide-bridged trigonal bipyramidal complex.
E. Hruska, Q. Zhu, S. Biswas, M. T. Fortunato, D. R. Broderick, C. M. Morales, J. M. Herbert,
C. Turro, and L. R. Baker.
J. Am. Chem. Soc. 146, 8031–8042 (2024).
[DOI]
[PDF]
[Supp. Info.]
- 157.
Visualizing and characterizing excited states from time-dependent density functional theory.
J. M. Herbert.
Phys. Chem. Chem. Phys. 26, 3755–3794 (2024).
[DOI]
[PDF]
(Invited "Perspective")
- 156.
Spectroscopy and dynamics of the hydrated electron at the water/air interface.
C. J. C. Jordan, M. P. Coons, J. M. Herbert, and J. R. R. Verlet.
Nat. Commun. 15, 182:1–8 (2024).
[DOI]
[PDF]
[Supp. Info.]
- 155.
Ground-state orbital analysis predicts S1 charge transfer in
donor–acceptor materials.
A. A. Taka, J. M. Herbert, and L. M. McCaslin.
J. Phys. Chem. Lett. 14, 11063–11068 (2023)
[DOI]
[PDF]
[Supp. Info.]
- 154.
Scalable generalized screening for high-order terms in the many-body expansion:
Algorithm, open-source implementation, and demonstration.
D. R. Broderick and J. M. Herbert.
J. Chem. Phys. 159, 174801:1–12 (2023)
[DOI]
[PDF]
(Special Issue: Modular and Interoperable Software for Chemical Physics)
- 153.
Time-dependent density functional theory for x-ray absorption spectra:
Comparing the real-time approach to linear response.
J. M. Herbert, Y. Zhu, B. Alam, and A. K. Ojha.
J. Chem. Theory Comput. 19, 6745–6760 (2023).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 152.
Tackling pedigree bias in faculty hiring.
J. M. Herbert. Inside Higher Ed (September 27, 2023).
[link]
- 151.
Roadmap on electronic structure codes in the exascale era.
V. Gavini, S. Baroni, V. Blum,
D. R. Bowler, A. Buccheri,
J. R. Chelikowsky, S. Das,
W. Dawson, P. Delugas, M. Dogan,
C. Draxl, G. Galli, L. Genovese,
P. Giannozzi, M. Giantomassi,
X. Gonze, M. Govoni,
F. Gygi, A. Gulans,
J. M. Herbert, S. Kokott,
T. K. Kühne, K.-H. Liou,
T. Miyazaki, P. Motamarri, A. Nakata,
J. E. Pask, C. Plessl, L. E. Ratcliff,
R. M. Richard, M. Rossi,
R. Schade, M. Scheffler, O. Schütt,
P. Suryanarayana, M. Torrent,
L. Truflandier, T. L. Windus, Q. Xu,
V. W.-Z. Yu, and D. Perez.
Model. Simul. Mater. Sci. Eng. 31 063301:1–86 (2023).
[DOI]
[PDF]
- 150.
Fractional-electron and transition-potential methods for core-to-valence excitation
energies using density functional theory.
S. Jana and J. M. Herbert.
J. Chem. Theory Comput. 19, 4100–4113 (2023).
[DOI]
[PDF]
[Supp. Info.]
- 149.
Appraisal of dispersion damping functions for the effective fragment potential method.
K. Carter-Fenk and J. M. Herbert.
Mol. Phys. 121, e2055504:1–9 (2023).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
(Special issue: Peter Gill Festschrift)
- 148.
Correcting π-delocalisation errors in conformational energies
using density-corrected DFT, with application to crystal polymorphs.
B. Rana, G. J. O. Beran, and J. M. Herbert.
Mol. Phys. 121, e2138789:1–14 (2023).
[DOI]
[PDF]
(Special issue: Nick Besley memorial)
- 147.
Density-functional theory for electronic excited states.
J. M. Herbert, Ch. 3 of Theoretical and Computational Photochemistry: Fundamentals,
Methods, Applications and Synergy with Experimental Approaches,
ed. by C. García-Iriepa and M. Marazzi, pp. 69–118
(Elsevier, 2023).
[DOI]
[PDF]
- 146.
Fragment-based calculations of enzymatic thermochemistry require dielectric boundary conditions.
P. E. Bowling, D. R. Broderick, and J. M. Herbert.
J. Phys. Chem. Lett. 14, 3826–3834 (2023).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 145.
Academic free speech or right-wing grievance?
J. M. Herbert. Digital Discov. 2, 260–297 (2023).
[DOI]
[PDF]
- 144.
Slater transition methods for core-level electron binding energies.
S. Jana and J. M. Herbert.
J. Chem. Phys. 158, 094111:1–14 (2023).
[DOI]
[PDF]
[Supp. Info.]
- 143.
Origins of offset-stacking in porous frameworks.
M. Gray and J. M. Herbert.
J. Phys. Chem. C 127, 2675–2686 (2023).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
(Special Issue: MQM 2022: The 10th Triennial Conference on Molecular Quantum Mechanics)
- 142.
Birth of the hydrated electron via charge-transfer-to-solvent excitation
of aqueous iodide.
K. Carter-Fenk, B. A. Johnson, J. M. Herbert, G. K. Schenter, and C. J. Mundy.
J. Phys. Chem. Lett. 14, 870–878 (2023).
[DOI]
[PDF]
[Supp. Info.]
- 141.
Spin-flip TDDFT for photochemistry.
J. M. Herbert and A. Mandal,
Ch. 10 of Time-Dependent Density-Functional Theory: Nonadiabatic Molecular Dynamics,
ed. by C. Zhu, pp. 361–404
(Jenny Stanford, 2023).
[DOI]
[PDF]
- 140.
Systematic evaluation of counterpoise correction in density functional theory.
M. Gray, P. E. Bowling, and J. M. Herbert.
J. Chem. Theory Comput. 18, 6742–6756 (2022).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 139.
Words matter: On the debate over free speech, inclusivity, and academic excellence.
J. M. Herbert, M. Head-Gordon, H. P. Hratchian, T. Head-Gordon, R. E. Amaro,
A. Aspuru-Guzik, R. Hoffmann, C. A. Parish, C. M. Payne, and T. Van Voorhis.
J. Phys. Chem. Lett. 13, 7100–7104 (2022).
[DOI]
[PDF]
- 138.
Detection and correction of delocalization errors for electron and hole polarons
using density-corrected DFT.
B. Rana, M. P. Coons, and J. M. Herbert.
J. Phys. Chem. Lett. 13, 5275–5284 (2022).
[DOI]
[PDF]
[Supp. Info.]
- 137.
High harmonic spectra computed using time-dependent Kohn-Sham theory with Gaussian
orbitals and a complex absorbing potential.
Y. Zhu and J. M. Herbert.
J. Chem. Phys. 156, 204123:1–16 (2022).
[DOI]
[PDF]
[Supp. Info.]
- 136.
State-specific solvation for restricted active space spin-flip (RAS-SF) wave functions
based on the polarizable continuum formalism.
B. Alam, H. Jiang, P. M. Zimmerman, and J. M. Herbert.
J. Chem. Phys. 156, 194110:1–14 (2022).
[DOI]
[PDF]
[Supp. Info.]
(Selected as an
"Editor's Choice")
- 135.
Comprehensive basis-set testing of extended symmetry-adapted perturbation theory and
assessment of mixed-basis combinations to reduce cost.
M. Gray and J. M. Herbert.
J. Chem. Theory Comput. 18, 2308–2330 (2022).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 134.
Theoretical approach to evaluate the gas-sensing performance of graphene
nanoribbon/oligothiophene composites.
A. Ashraf, J. M. Herbert, S. Muhammad, B. A. Farooqi, U. Farooq, M. Salman, and K. Ayub.
ACS Omega 7, 2260–2274 (2022).
[DOI]
[PDF]
[Supp. Info.]
- 133.
Interaction energy analysis of monovalent inorganic anions in bulk water versus
air/water interface.
J. M. Herbert and S. K. Paul.
Molecules 26, 6719:1–20 (2021).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
(Special issue: Frank Weinhold Festschrift)
- 132.
Predicting and understanding non-covalent interactions using novel forms of
symmetry-adapted perturbation theory.
K. Carter-Fenk, K. U. Lao, and J. M. Herbert.
Acc. Chem. Res. 54, 3679–3690 (2021).
[DOI]
[PDF]
- 131.
Nonadiabatic dynamics with spin-flip versus linear-response time-dependent
density functional theory: A case study for the protonated Schiff base
C5H6NH2+.
X. Zhang and J. M. Herbert,
J. Chem. Phys. 155, 124111:1–15 (2021).
[DOI]
[PDF]
(Selected as an "Editor's Pick")
- 130.
Neat, simple, and wrong: Debunking electrostatic fallacies regarding
noncovalent interactions.
J. M. Herbert,
J. Phys. Chem. A 125, 7125–7137 (2021).
[DOI]
[PDF]
- 129.
Software for the frontiers of quantum chemistry:
An overview of developments in the Q-Chem 5 package.
E. Epifanovsky, A. T. B. Gilbert, X. Feng, J. Lee, Y. Mao, N. Mardirossian, P. Pokhilko,
A. F. White, M. P. Coons, A. L. Dempwolff, Z. Gan, D. Hait, P. R. Horn, L. D. Jacobson,
I. Kaliman, J. Kussmann, A. W. Lange, K. U. Lao, D. S. Levine, J. Liu, S. C. McKenzie,
A. F. Morrison, K. D. Nanda, F. Plasser, D. R. Rehn, M. L. Vidal, Z.-Q. You, Y. Zhu,
B. Alam, B. J. Albrecht, A. Aldossary, E. Alguire, J. H. Andersen, V. Athavale,
D. Barton, K. Begam, A. Behn, N. Bellonzi,
Y. A. Bernard, E. J. Berquist, H. G. A. Burton, A. Carreras, K. Carter-Fenk, R. Chakraborty,
A. D. Chien, K. D. Closser, V. Cofer-Shabica, S. Dasgupta, M. de Wergifosse, J. Deng,
M. Diedenhofen, H. Do, S. Ehlert, P.-T. Fang, S. Fatehi, Q. Feng, T. Friedhoff,
J. Gayvert, Q. Ge,
G. Gidofalvi, M. Goldey, J. Gomes, C. E. González-Espinoza, S. Gulania, A. O. Gunina,
M. W. D. Hanson-Heine, P. H. P. Harbach, A. Hauser, M. F. Herbst, M. Hernández Vera,
M. Hodecker, Z. C. Holden, S. Houck, X. Huang, K. Hui, B. C. Huynh, M. Ivanov,
Á. Jász, H. Ji, H. Jiang, B. Kaduk, S. Kähler, K. Khistyaev, J. Kim,
G. Kis, P. Klunzinger, Z. Koczor-Benda, J. H. Koh, D. Kosenkov, L. Koulias, T. Kowalczyk,
C. M. Krauter, K. Kue, A. Kunitsa, T. Kus, I. Ladjánszki, A. Landau, K. V. Lawler,
D. Lefrancois, S. Lehtola, R. R. Li, Y.-P. Li, J. Liang, M. Liebenthal, H.-H. Lin, Y.-S. Lin,
F. Liu, K.-Y. Liu, M. Loipersberger, A. Luenser, A. Manjanath, P. Manohar, E. Mansoor,
S. F. Manzer, S.-P. Mao, A. V. Marenich, T. Markovich, S. Mason, S. A. Maurer, P. F. McLaughlin,
M. F. S. J. Menger, J.-M. Mewes, S. A. Mewes, P. Morgante, J. W. Mullinax,
K. J. Oosterbaan, G. Paran, A. C. Paul, S. K. Paul, F. Pavošević, Z. Pei, S. Prager,
E. I. Proynov, Á. Rák, E. Ramos-Cordoba, B. Rana, A. E. Rask,
A. Rettig, R. M. Richard,
F. Rob, E. Rossomme, T. Scheele, M. Scheurer, M. Schneider, N. Sergueev, S. M. Sharada,
W. Skomorowski, D. W. Small, C. J. Stein, Y.-C. Su, E. J. Sundstrom, Z. Tao, J. Thirman,
G. J. Tornai, T. Tsuchimochi, N. M. Tubman, S. P. Veccham, O. Vydrov, J. Wenzel, J. Witte,
A. Yamada, K. Yao, S. Yeganeh, S. R. Yost, A. Zech, I. Y. Zhang, X. Zhang, Y. Zhang, D. Zuev,
A. Aspuru-Guzik, A. T. Bell, N. A. Besley, K. B. Bravaya, B. R. Brooks, D. Casanova, J.-D. Chai,
S. Coriani, C. J. Cramer, G. Cserey, A. E. DePrince III, R. A. DiStasio Jr., A. Dreuw,
B. D. Dunietz, T. R. Furlani, W. A. Goddard III, S. Hammes-Schiffer, T. Head-Gordon,
W. J. Hehre, C.-P. Hsu, T.-C. Jagau, Y. Jung, A. Klamt, J. Kong, D. S. Lambrecht, W. Liang,
N. J. Mayhall, C. W. McCurdy, J. B. Neaton, C. Ochsenfeld, J. A. Parkhill, R. Peverati,
V. A. Rassolov, Y. Shao, L. V. Slipchenko, T. Stauch, R. P. Steele, J. E. Subotnik,
A. J. W. Thom, A. Tkatchenko, D. G. Truhlar, T. Van Voorhis, T. A. Wesolowski, K. B. Whaley,
H. L. Woodcock III, P. M. Zimmerman, S. Faraji, P. M. W. Gill, M. Head-Gordon, J. M. Herbert,
and A. I. Krylov,
J. Chem. Phys. 155, 084801:1–59 (2021).
[DOI]
[PDF]
- 128.
Hidden hemibonding in the aqueous hydroxyl radical.
B. Rana and J. M. Herbert,
J. Phys. Chem. Lett. 12, 8053–8060 (2021).
[DOI]
[PDF]
[Supp. Info.]
- 127.
Simplified tuning of long-range corrected density functionals for symmetry-adapted
perturbation theory.
M. Gray and J. M. Herbert,
J. Chem. Phys. 155, 034103:1–8 (2021).
[DOI]
[PDF]
[Supp. Info.]
- 126.
Probing interfacial effects on ionization energies: The surprising banality of
anion–water hydrogen bonding at the air/water interface.
S. K. Paul and J. M. Herbert,
J. Am. Chem. Soc. 143, 10189–10202 (2021).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
[Supp. Info. 3]
- 125.
Natural charge-transfer analysis: Eliminating spurious charge-transfer states in
time-dependent density functional theory via diabatization, with application to
projection-based embedding.
K. Carter-Fenk, C. J. Mundy, and J. M. Herbert,
J. Chem. Theory Comput. 17, 4195–4210 (2021).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 124.
Vibrational exciton delocalization precludes the use
of infrared intensities as proxies for surfactant accumulation on aqueous surfaces.
K. A. Carter-Fenk, K. Carter-Fenk, M. E. Fiamingo, H. C. Allen, and J. M. Herbert.
Chem. Sci. 12, 8320–8332 (2021).
[DOI]
[PDF]
[Supp. Info.]
- 123.
Dielectric continuum methods for quantum chemistry.
J. M. Herbert. WIREs Comput. Mol. Sci. 11, e1519:1–73 (2021).
[DOI]
[PDF]
- 122.
Electrostatics, charge transfer, and the nature of the halide–water hydrogen bond.
J. M. Herbert and K. Carter-Fenk.
J. Phys. Chem. A 125, 1243–1256 (2021).
[DOI]
[PDF]
[Supp. Info.]
(Special issue: Daniel Neumark Festschrift)
- 121.
Role of hemibonding in the structure and ultraviolet spectroscopy of the
aqueous hydroxyl radical.
B. Rana and J. M. Herbert.
Phys. Chem. Chem. Phys. 22, 27829–27844 (2020).
[DOI]
[PDF]
[Supp. Info.]
- 120.
Charge separation and charge transfer in low-lying excited states of pentacene.
B. Alam, A. F. Morrison, and J. M. Herbert.
J. Phys. Chem. C 124, 24653–24666 (2020).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
(Special issue: Josef Michl Festschrift)
- 119.
Reinterpreting π-stacking.
K. Carter-Fenk and J. M. Herbert,
Phys. Chem. Chem. Phys. 22, 24870–24886 (2020).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
(See our cover art)
- 118.
How well does a solvated octa-acid capsule shield the embedded chromophore?
A computational analysis based on an anisotropic dielectric continuum model.
H. Aksu, S. K. Paul, J. M. Herbert, and B. D. Dunietz,
J. Phys. Chem. B 124, 6998–7004 (2020).
[DOI]
[PDF]
[Supp. Info.]
- 117.
Ab initio approach to femtosecond stimulated Raman spectroscopy:
Investigating vibrational modes probed in excited-state relaxation of quaterthiophene.
S. Dasgupta and J. M. Herbert,
J. Phys. Chem. A 124, 6356–6362 (2020).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 116.
State-targeted energy projection: A simple and robust approach to orbital
relaxation of non-aufbau self-consistent field solutions.
K. Carter-Fenk and J. M. Herbert,
J. Chem. Theory Comput. 16, 5067–5082 (2020).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 115.
Electrostatics does not dictate the slip-stacked arrangement of aromatic π–π interactions.
K. Carter-Fenk and J. M. Herbert,
Chem. Sci. 11, 6758–6765 (2020).
[DOI]
[PDF]
[Supp. Info.]
- 114.
Intrinsically smooth discretisation of Connolly's solvent-excluded molecular surface.
A. W. Lange, J. M. Herbert, B. J. Albrecht, and Z.-Q. You,
Mol. Phys. 118, e1644384:1–18 (2020).
[DOI]
[PDF]
- 113.
Using atomic confining potentials for geometry optimizations and vibrational frequency
calculations in quantum-chemical models of enzyme active sites.
S. Dasgupta and J. M. Herbert,
J. Phys. Chem. B 124, 1137–1147 (2020).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 112.
Silver clusters tune up electronic properties of graphene nanoflakes:
A comprehensive theoretical study.
T. Jadoon, K. Carter-Fenk, M. B. A. Siddique, J. M. Herbert, R. Hussain,
S. Iqbal, J. Iqbal, and K. Ayub,
J. Mol. Liq. 297, 111902:1–16 (2020).
[DOI]
[PDF]
[Supp. Info.]
- 111.
Energy-screened many-body expansion: A practical yet accurate fragmentation method for quantum chemistry.
K.-Y Liu and J. M. Herbert,
J. Chem. Theory Comput. 16, 475–487 (2020).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 110.
The Poisson-Boltzmann model for implicit solvation of electrolyte solutions:
Quantum chemical implementation and assessment via Sechenov coefficients.
C. J. Stein, J. M. Herbert, and M. Head-Gordon,
J. Chem. Phys. 151, 224111:1–14 (2019).
[DOI]
[PDF]
[Supp. Info.]
- 109.
Interaction of graphene quantum dots with oligothiophene:
A comprehensive theoretical study.
A. Ashraf, K. Carter-Fenk, J. M. Herbert, B. A. Farooqi, U. Farooq, and K. Ayub,
J. Phys. Chem. C 123, 29556–29570 (2019).
[DOI]
[PDF]
[Supp. Info.]
- 108.
Fantasy versus reality in fragment-based quantum chemistry.
J. M. Herbert,
J. Chem. Phys. 151, 170901:1–38 (2019).
[DOI]
[PDF]
(Invited "Perspective")
- 107.
Ab initio investigation of the resonance Raman spectrum of the hydrated electron.
S. Dasgupta, B. Rana, and J. M. Herbert,
J. Phys. Chem. B 123, 8074–8085 (2019).
[DOI]
[PDF]
[Supp. Info.]
- 106.
Structure of the aqueous electron.
J. M. Herbert,
Phys. Chem. Chem. Phys. 21, 20538–20565 (2019).
[DOI]
[PDF]
[Supp. Info.]
(Invited "Perspective")
- 105.
Self-consistent charge embedding at very low cost, with application to
symmetry-adapted perturbation theory.
K.-Y. Liu, K. Carter-Fenk, and J. M. Herbert,
J. Chem. Phys. (Communication) 151, 031102:1–7 (2019).
[DOI]
[PDF]
[Supp. Info.]
- 104.
Variational formulation of the generalized many-body expansion with self-consistent charge
embedding: Simple and correct analytic energy gradient for fragment-based
ab initio molecular dynamics.
J. Liu, B. Rana, K.-Y. Liu, and J. M. Herbert,
J. Phys. Chem. Lett. 10, 3877–3886 (2019).
[DOI]
[PDF]
[Supp. Info.]
- 103.
Accurate and efficient ab initio calculations for supramolecular complexes:
Symmetry-adapted perturbation theory with many-body dispersion.
K. Carter-Fenk, K. U. Lao, K.-Y. Liu, and J. M. Herbert,
J. Phys. Chem. Lett. 10, 2706–2714 (2019).
[DOI]
[PDF]
[Supp. Info.]
- 102.
Analytic gradient for the QM/MM-Ewald method using charges derived from the electrostatic
potential: Theory, implementation, and application to ab initio molecular dynamics
simulation of the aqueous electron.
Z. C. Holden, B. Rana, and J. M. Herbert,
J. Chem. Phys. 150, 144115:1–20 (2019).
[DOI]
[PDF]
[Supp. Info.]
- 101.
Double-buffered, heterogeneous CPU + GPU integral digestion algorithm for
single-excitation calculations involving a large number of excited states.
A. F. Morrison, E. Epifanovsky, and J. M. Herbert,
J. Comput. Chem. 39, 2173–2182 (2018).
[DOI]
[PDF]
- 100.
A simple correction for nonadditive dispersion within extended symmetry-adapted
perturbation theory (XSAPT).
K. U. Lao and J. M. Herbert,
J. Chem. Theory Comput. 14, 5128–5142 (2018).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
[Supp. Info. 3]
- 99.
Atomic orbital implementation of extended symmetry-adapted perturbation theory (XSAPT)
and benchmark calculations for large supramolecular complexes.
K. U. Lao and J. M. Herbert,
J. Chem. Theory Comput. 14, 2955–2978 (2018).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 98.
Quantum chemistry in arbitrary dielectric environments: Theory and implementation of
nonequilibrium Poisson boundary conditions
and application to compute vertical ionization energies at the air/water interface.
M. P. Coons and J. M. Herbert,
J. Chem. Phys. 148, 222834:1–21 (2018).
[DOI]
[PDF]
(Special Issue: Ions in Water)
- 97.
Self-consistent predictor/corrector algorithms for stable and efficient integration
of the time-dependent Kohn-Sham equation.
Y. Zhu and J. M. Herbert,
J. Chem. Phys. 148, 044117:1–18 (2018).
[DOI]
[PDF]
[Supp. Info.]
- 96.
Understanding the many-body expansion for large systems. III.
Critical role of four-body terms, counterpoise corrections, and cutoffs.
K.-Y. Liu and J. M. Herbert,
J. Chem. Phys. 147, 161729:1–13 (2017).
[DOI]
[PDF]
[Supp. Info.]
(Special Issue: From Quantum Mechanics to Force Fields)
- 95.
What is the optoelectronic effect of the capsule on the guest
molecule in aqueous host/guest complexes? A combined computational and
spectroscopic perspective.
S. Bhandari, Z. Zheng, B. Maiti, C.-H. Chuang, M. Porel, Y. Mintu, Z.-Q. You,
V. Ramamurthy, C. Burda, J. M. Herbert, and B. D. Dunietz,
J. Phys. Chem. C 121, 15481–15488 (2017).
[DOI]
[PDF]
[Supp. Info.]
- 94.
Analytic derivative couplings and first-principles exciton/phonon coupling constants for an
ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to
compute triplet exciton mobility parameters for crystalline tetracene.
A. F. Morrison and J. M. Herbert,
J. Chem. Phys. 146, 224110:1–12 (2017).
[DOI]
[PDF]
- 93.
Accuracy of finite-difference harmonic frequencies in density functional theory.
K.-Y. Liu, J. Liu, and J. M. Herbert,
J. Comput. Chem. 38, 1678–1684 (2017).
[DOI]
[PDF]
[Supp. Info.]
- 92.
The hydrated electron.
J. M. Herbert and M. P. Coons,
Annu. Rev. Phys. Chem. 68, 447–472 (2017).
[DOI]
[PDF]
- 91.
Evidence for singlet fission driven by vibronic coherence in crystalline tetracene.
A. F. Morrison and J. M. Herbert,
J. Phys. Chem. Lett. 8, 1442–1448 (2017).
(Included in Top Selected Papers in the Physical Chemistry of Energy Materials, 2016–2017)
[DOI]
[PDF]
[Supp. Info.]
- 90.
Standard grids for high-precision integration of modern density functionals: SG-2 and SG-3.
S. Dasgupta and J. M. Herbert,
J. Comput. Chem. 38, 869–882 (2017).
[DOI]
[PDF]
[Supp. Info.]
- 89.
On the accuracy of the general, state-specific polarizable-continuum model for the
description of correlated ground- and excited states in solution.
J.-M. Mewes, J. M. Herbert, and A. Dreuw,
Phys. Chem. Chem. Phys. 19, 1644–1654 (2017)
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
[Supp. Info. 3]
- 88.
Reparameterization of an accurate, few-parameter implicit solvation model for quantum chemistry:
Composite method for implicit representation of solvent, CMIRS v. 1.1.
Z.-Q. You and J. M. Herbert,
J. Chem. Theory Comput. 12, 4338–4346 (2016).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 87.
The hydrated electron at the surface of neat liquid water appears to be indistinguishable
from the bulk species.
M. P. Coons, Z.-Q. You, and J. M. Herbert,
J. Am. Chem. Soc. 138, 10879–10886 (2016).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
[Supp. Info. 3]
- 86.
Energy decomposition analysis with a stable charge-transfer term for interpreting
intermolecular interactions.
K. U. Lao and J. M. Herbert,
J. Chem. Theory Comput. 12, 2569–2582 (2016).
[DOI]
[PDF]
[Supp. Info.]
- 85.
Beyond time-dependent density functional theory using only single excitations:
Methods for computational studies of excited states in complex systems.
J. M. Herbert, X. Zhang, A. F. Morrison, and J. Liu,
Acc. Chem. Res. 49, 931–941 (2016).
[DOI]
[PDF]
- 84.
Understanding the many-body expansion for large systems. II. Accuracy considerations.
K. U. Lao, K.-Y. Liu, R. M. Richard, and J. M. Herbert.
J. Chem. Phys. 144, 164105:1–15 (2016).
[DOI]
[PDF]
[Supp. Info.]
- 83.
Polarizable continuum models for (bio)molecular electrostatics: Basic theory and
recent developments for macromolecules and simulations.
J. M. Herbert and A. W. Lange,
Ch. 11 of Many-Body Effects and Electrostatics in Biomolecules,
ed. by Q. Cui, P. Ren, and M. Meuwly, pp. 363–416
(Pan Stanford, 2016).
[DOI]
[PDF]
- 82.
Pair–pair approximation to the generalized many-body expansion: An alternative to the
four-body expansion for ab initio prediction of protein energetics via molecular fragmentation.
J. Liu and J. M. Herbert.
J. Chem. Theory Comput. 12, 572–584 (2016).
[DOI]
[PDF]
- 81.
Computation of hydration free energies using the multiple
environment single system quantum mechanical/molecular mechanical method.
G. König, Y. Mei, F. Pickard IV, A. C. Simmonett, B. T. Miller, J. M. Herbert,
H. L. Woodcock, B. R. Brooks, and Y. Shao.
J. Chem. Theory Comput. 12, 332–344 (2016).
[DOI]
[PDF]
[Supp. Info.]
- 80.
Local excitation approximations to time-dependent density functional theory for
excitation energies in solution.
J. Liu and J. M. Herbert.
J. Chem. Theory Comput. 12, 157–166 (2016).
[DOI]
[PDF]
[Supp. Info.]
- 79.
Spin-flip, tensor equation-of-motion configuration interaction with a density-functional
correction: A spin-complete method for exploring excited-state potential energy surfaces.
X. Zhang and J. M. Herbert.
J. Chem. Phys. 143, 234107:1–10 (2015)
[DOI]
[PDF]
- 78.
Comparison of the Marcus and Pekar partitions in the context of non-equilibrium,
polarizable-continuum solvation models.
Z.-Q. You, J.-M. Mewes, A. Dreuw, and J. M. Herbert.
J. Chem. Phys. 143, 204104:1–14 (2015).
[DOI]
[PDF]
[Supp. Info.]
- 77.
Low-scaling quantum chemistry approach to excited-state properties via an ab initio
exciton model: Application to excitation energy transfer in a self-assembled nanotube.
A. F. Morrison and J. M. Herbert.
J. Phys. Chem. Lett. 6, 4390–4396 (2015).
[DOI]
[PDF]
[short presentation]
- 76.
An efficient and accurate approximation to time-dependent density functional theory for
systems of weakly coupled monomers.
J. Liu and J. M. Herbert.
J. Chem. Phys. 143, 034106:1–12 (2015).
[DOI]
[PDF]
[Supp. Info.]
- 75.
What is the price of open-source software?
A. I. Krylov, J. M. Herbert, F. Furche, M. Head-Gordon, P. J. Knowles, R. Lindh,
F. R. Manby, P. Pulay, C.-K. Skylaris, and H.-J. Werner.
J. Phys. Chem. Lett. 6, 2751–2754 (2015).
[DOI]
[PDF]
- 74.
A structural model for a self-assembled nanotube provides insight into its exciton dynamics.
M. Gao, S. Paul, C. D. Schwieters, Z.-Q. You, H. Shao, J. M. Herbert,
J. R. Parquette, and C. P. Jaroniec.
J. Phys. Chem. C 119, 13948–13956 (2015).
[DOI]
[PDF]
[Supp. Info.]
- 73.
Accurate description of intermolecular interactions involving ions using symmetry-adapted
perturbation theory.
K. U. Lao, R. Schäffer, G. Jansen, and J. M. Herbert.
J. Chem. Theory Comput. 11, 2473–2486 (2015).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
[Supp. Info. 3]
[Supp. Info. 4]
[Supp. Info. 5]
- 72.
Experimental benchmark data and systematic evaluation of two a posteriori,
polarizable-continuum corrections for vertical excitation energies in solution.
J.-M. Mewes, Z.-Q. You, M. Wormit, T. Kriesche, J. M. Herbert, and A. Dreuw.
J. Phys. Chem. A 119, 5446–5464 (2015).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
[Supp. Info. 3]
[Supp. Info. 4]
[Supp. Info. 5]
(Jacopo Tomasi Festschrift)
-
- 71.
The quantum chemistry of loosely-bound electrons.
J. M. Herbert, Ch. 8 of
Reviews in Computational Chemistry 28,
ed. by A. L. Parrill and K. B. Lipkowitz,
pp. 391–517 (2015).
[DOI]
[PDF]
- 70.
Analytic derivative couplings in time-dependent density functional theory:
Quadratic response theory versus pseudo-wavefunction approach.
X. Zhang and J. M. Herbert.
J. Chem. Phys. 142, 064109:1–12 (2015).
[DOI]
[PDF]
-
- 69.
Accurate and efficient quantum chemistry calculations for noncovalent interactions
in many-body systems: The XSAPT family of methods.
K. U. Lao and J. M. Herbert.
J. Phys. Chem. A 119 235–252 (2015).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
(Invited Feature Article; see our
cover artwork.)
-
- 68.
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package.
Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kussmann, A. W. Lange, A. Behn,
J. Deng, X. Feng, D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin,
T. Kús, A. Landau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz,
R. P. Steele, E. J. Sundstrom, H. L. Woodcock III, P. M. Zimmerman, D. Zuev, B. Albrecht,
E. Alguire,
B. Austin, G. J. O. Beran, Y. A. Bernard, E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown,
D. Casanova, C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden, M. Diedenhofen,
R. A. DiStasio Jr., H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi, L. Fusti-Molnar, A. Ghysels,
A. Golubeva-Zadorozhnaya, J. Gomes, M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser,
E. G. Hohenstein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim, J. Kim,
R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M. Krauter, K. U. Lao, A. D. Laurent,
K. V. Lawler, S. V. Levchenko, C. Y. Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser,
P. Manohar,
S. F. Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer, N. J. Mayhall,
E. Neuscamman, C. M. Oana,
R. Olivares-Amaya, D. P. O'Neill, J. A. Parkhill, T. M. Perrine, R. Peverati,
A. Prociuk, D. R. Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small,
A. Sodt, T. Stein, D. Stück, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi, V. Vanovschi, L. Vogt,
O. Vydrov, T. Wang, M. A. Watson, J. Wenzel, A. White, C. F. Williams, J. Yang, S. Yeganeh,
S. R. Yost, Z.-Q. You, I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. L. Chan, D. M. Chipman,
C. J. Cramer, W. A. Goddard III, M. S. Gordon, W. J. Hehre, A. Klamt, H. F. Schaefer III,
M. W. Schmidt, C. D. Sherrill, D. G. Truhlar, A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer,
A. T. Bell, N. A. Besley, J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney,
C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsenfeld, V. A. Rassolov,
L. V. Slipchenko, J. E. Subotnik, T. Van Voorhis, J. M. Herbert, A. I. Krylov, P. M. W. Gill,
and M. Head-Gordon.
Mol. Phys. 113, 184–215 (2015).
[DOI]
[PDF]
- 67.
Ab initio implementation of the Frenkel-Davydov exciton model:
A naturally parallelizable approach to computing collective excitations in crystals
and aggregates.
A. F. Morrison, Z.-Q. You, and J. M. Herbert.
J. Chem. Theory Comput. 10, 5366–5376 (2014).
[DOI]
[PDF]
-
- 66.
Aiming for benchmark accuracy with the many-body expansion.
R. M. Richard, K. U. Lao, and J. M. Herbert.
Acc. Chem. Res. 47, 2828–2836 (2014).
[DOI]
[PDF]
- 65.
Optical spectroscopy of the bulk and interfacial hydrated electron from
ab initio calculations.
F. Uhlig, J. M. Herbert, M. P. Coons, and P. Jungwirth.
J. Phys. Chem. A 118, 7507–7515 (2014).
[DOI]
[PDF]
[Supp. Info.]
(Kenneth Jordan Festschrift)
- 64.
Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip
time-dependent density functional theory.
X. Zhang and J. M. Herbert.
J. Chem. Phys. 141, 064104:1–9 (2014).
[DOI]
[PDF]
[Supp. Info.]
- 63.
Excited-state deactivation pathways in uracil versus hydrated uracil: Solvatochromatic
shift in the 1nπ* state is the key.
X. Zhang and J. M. Herbert.
J. Phys. Chem. B 118, 7806–7817 (2014).
[DOI]
[PDF]
[Supp. Info.]
(Special Issue: James L. Skinner Festschrift)
- 62.
Understanding the many-body expansion for large systems. I. Precision considerations.
R. M. Richard, K. U. Lao, and J. M. Herbert.
J. Chem. Phys. 141, 014108:1–14 (2014).
[DOI]
[PDF]
[Supp. Info.]
- 61.
Symmetry-adapted perturbation theory with Kohn-Sham orbitals using non-empirically tuned,
long-range-corrected density functionals.
K. U. Lao and J. M. Herbert.
J. Chem. Phys. 140, 044108:1–8 (2014).
[DOI]
[PDF]
[Supp. Info.]
(Selected by JCP as an
"Editor's Choice for 2014".)
- 60.
Periodic boundary conditions for QM/MM calculations: Ewald summation for extended
Gaussian basis sets.
Z. C. Holden, R. M. Richard, and J. M. Herbert.
J. Chem. Phys. 139, 244108:1–13 (2013).
[DOI]
[PDF]
- 59.
Approaching the complete-basis limit with a truncated many-body expansion.
R. M. Richard, K. U. Lao, and J. M. Herbert.
J. Chem. Phys. 139, 224102:1–11 (2013).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 58.
Efficient monomer-based quantum chemistry methods for molecular and ionic clusters.
L. D. Jacobson, R. M. Richard, K. U. Lao, and J. M. Herbert.
Annu. Rep. Comput. Chem. 9, 25–56 (2013).
[DOI]
[PDF]
- 57.
Achieving the CCSD(T) basis-set limit in sizable molecular clusters: Counterpoise
corrections for the many-body expansion.
R. M. Richard, K. U. Lao, and J. M. Herbert.
J. Phys. Chem. Lett. 4, 2674–2680 (2013).
[DOI]
[PDF]
[short presentation]
[Supp. Info. 1]
[Supp. Info. 2]
- 56.
An improved treatment of empirical dispersion and a many-body energy decomposition scheme for
the explicit polarization plus symmetry-adapted perturbation theory (XSAPT) method.
K. U. Lao and J. M. Herbert.
J. Chem. Phys. 139, 034107:1–16 (2013).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 55.
Many-body expansion with overlapping fragments: Analysis of two approaches.
R. M. Richard and J. M. Herbert.
J. Chem. Theory Comput. 9, 1408–1416 (2013).
[DOI]
[PDF]
[Supp. Info.]
- 48.
Structure of the aqueous electron: Assessment of one-electron pseudopotential models
in comparison to experimental data and time-dependent density functional theory.
J. M. Herbert and L. D. Jacobson.
J. Phys. Chem. A 115, 14470–14483 (2011).
[DOI]
[PDF]
- 47.
Theoretical characterization of four distinct isomer types in hydrated-electron
clusters, and proposed assignments for photoelectron spectra of water cluster anions.
L. D. Jacobson and J. M. Herbert.
J. Am. Chem. Soc. 133, 19889–19899 (2011).
[DOI]
[PDF]
- 46.
A simple algorithm for determining orthogonal, self-consistent
excited-state wave functions for a state-specific Hamiltonian:
Application to the optical spectrum of the aqueous electron.
L. D. Jacobson and J. M. Herbert.
J. Chem. Theory Comput. 7, 2085–2093 (2011).
[DOI]
[PDF]
- 45.
Symmetric versus asymmetric discretization of the integral equations in
polarizable continuum solvation models.
A. W. Lange and J. M. Herbert.
Chem. Phys. Lett. 509, 77–87 (2011).
[DOI]
[PDF]
[Supp. Info.]
- 44.
A simple polarizable continuum solvation model for electrolyte solutions.
A. W. Lange and J. M. Herbert.
J. Chem. Phys. 134, 204110:1–15 (2011).
[DOI]
[PDF]
[Supp. Info.]
- 43.
Time-dependent density-functional description of the
1La state in polycyclic aromatic
hydrocarbons: Charge-transfer character in disguise?
R. M. Richard and J. M. Herbert.
J. Chem. Theory Comput. 7, 1296–1306 (2011).
[DOI]
[PDF]
[Supp. Info. 1]
[Supp. Info. 2]
- 42.
Comment on "Does the hydrated electron occupy a cavity?".
L. D. Jacobson and J. M. Herbert.
Science 331, 1387 (2011).
[DOI]
[PDF]
- 41.
Response to "Comment on 'A smooth, nonsingular, and faithful discretization
scheme for polarizable continuum models: The switching/Gaussian approach"'.
A. W. Lange and J. M. Herbert.
J. Chem. Phys. 134, 117102:1–2 (2011).
[DOI]
[PDF]
- 40.
An efficient, fragment-based electronic structure method for molecular
systems: Self-consistent polarization with perturbative two-body exchange
and dispersion.
L. D. Jacobson and J. M. Herbert.
J. Chem. Phys. 134, 094118:1–17 (2011).
[DOI]
[PDF]
[Supp. Info.]
(Selected by JCP as an
"Editor's Choice for 2011".)
- 39.
Nature's most squishy ion: The important role of solvent polarization in
the description of the hydrated electron.
J. M. Herbert and L. D. Jacobson,
Int. Rev. Phys. Chem. 30, 1–48 (2011).
[DOI]
[PDF]
- 38.
A smooth, nonsingular, and faithful discretization scheme for polarizable
continuum models: The switching/Gaussian approach.
A. W. Lange and J. M. Herbert.
J. Chem. Phys. 133, 244111:1–18 (2010).
[DOI]
[PDF]
[Supp. Info.]
- 37.
Noncovalent interactions in extended systems described by the effective
fragment potential method: Theory and application to nucleobase oligomers.
D. Ghosh, D. Kosenkov, V. Vanovschi, C. F. Williams, J. M. Herbert, M. S. Gordon,
M. W. Schmidt, L. V. Slipchenko, and A. I. Krylov.
J. Phys. Chem. A 114, 12739–12754 (2010).
[DOI]
[PDF]
[Supp. Info.]
- 36.
A one-electron model for the aqueous electron that includes many-body
electron-water polarization: Bulk equilibrium structure, vertical electron
binding energy, and optical absorption spectrum.
L. D. Jacobson and J. M. Herbert.
J. Chem. Phys. 133, 154506:1–19 (2010).
[DOI]
[PDF]
[Supp. Info.]
- 35.
Polarization-bound quasi-continuum states are responsible for the "blue tail"
in the optical absorption spectrum of the aqueous electron.
L. D. Jacobson and J. M. Herbert.
J. Am. Chem. Soc. 132, 10000–10002 (2010).
[DOI]
[PDF]
[Supp. Info.]
- 34.
Polarizable continuum reaction-field solvation models affording
smooth potential energy surfaces.
A. W. Lange and J. M. Herbert.
J. Phys. Chem. Lett. 1, 556–561 (2010).
[DOI]
[PDF]
[Supp. Info.]
- 33.
The role of the neutral water potential in determining the
properties of anionic water clusters.
J. M. Herbert, L. D. Jacobson, and C. F. Williams, in
Molecular Potential Energy Surfaces in Many Dimensions,
ed. by M.M. Law and A. Ernesti, Collaborative Computational Project
on Molecular Quantum Dynamics (CCP6), Daresbury, United Kingdom (2009),
pages 28–38.
[PDF]
- 32.
The static-exchange electron-water pseudopotential, in conjunction with
a polarizable water model: A new Hamiltonian for hydrated-electron simulations.
L. D. Jacobson, C. F. Williams, and J. M. Herbert.
J. Chem. Phys. 130, 124115:1–18 (2009).
[DOI]
[PDF]
- 31.
Both intra- and interstrand charge-transfer excited states in aqueous
B-DNA are present at energies comparable to, or just above, the
1ππ* excitonic bright states.
A. W. Lange and J. M. Herbert.
J. Am. Chem. Soc. 131, 3913–3922 (2009).
[DOI]
[PDF]
[Supp. Info.]
- 30.
A long-range-corrected density functional that performs well for both
ground-state properties and time-dependent density functional theory
excitation energies, including charge-transfer excited states.
M. A. Rohrdanz, K. M. Martins, and J. M. Herbert.
J. Chem. Phys. 130, 054112:1–8 (2009).
(One of JCP's most downloaded articles in February, 2009.)
[DOI]
[PDF]
[Supp. Info.]
- 29.
Simultaneous benchmarking of ground- and excited-state properties
with long-range-corrected density functional theory.
M. A. Rohrdanz and J. M. Herbert.
J. Chem. Phys. 129, 034107:1–8 (2008).
[DOI]
[PDF]
[Supp. Info.]
- 28.
Influence of structure on electron correlation effects and
electron–water dispersion interactions in anionic water clusters.
C. F. Williams and J. M. Herbert.
J. Phys. Chem. A 112, 6171–6178 (2008).
[DOI]
[PDF]
[Supp. Info.]
- 27.
Charge-transfer excited states in a π-stacked adenine dimer, as
predicted using long-range-corrected time-dependent density functional theory.
A. W. Lange, M. A. Rohrdanz, and J. M. Herbert.
J. Phys. Chem. B (Letter) 112, 6304–6308 (2008).
[DOI]
[PDF]
[Supp. Info.]
- 26.
Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine.
P. M. Hare, C. T. Middleton, K. I. Mertel, J. M. Herbert, and B. Kohler.
Chem. Phys. 347, 383–392 (2008).
[DOI]
[PDF]
(Special issue: Wolfgang Domcke Festschrift)
- 25.
Simple methods to reduce charge-transfer contamination in time-dependent
density-functional calculations of clusters and liquids.
A. Lange and J. M. Herbert.
J. Chem. Theory Comput. 3, 1680–1690 (2007)
(One of JCTC's
most-acessed
articles in 2007.)
[DOI]
[PDF]
- 24.
Infrared photodissociation of a water molecule from a flexible
molecule–H2O complex: Rates and conformational
product yields following XH stretch excitation.
J. R. Clarkson, J. M. Herbert, and T. S. Zwier.
J. Chem. Phys. 126, 134306:1–15 (2007).
[DOI]
[PDF]
[Supp. Info.]
- 23.
Magnitude and significance of the higher-order reduced density matrix cumulants.
J. M. Herbert. Int. J. Quantum Chem. 107, 703–711 (2007).
[DOI]
[PDF]
- 22.
Cumulants, extensivity, and the connected formulation of the
contracted Schrödinger equation.
J. M. Herbert and J. E. Harriman,
in Reduced Density Matrix Mechanics with Applications to
Many-Electron Atoms and Molecules, ed. by D.A. Mazziotti,
Adv. Chem. Phys. 134, 261–292 (2007).
[PDF]
- 21.
Charge penetration and the origin of large O–H vibrational
red-shifts in hydrated-electron clusters,
(H2O)n–.
J. M. Herbert and M. Head-Gordon.
J. Am. Chem. Soc. 128, 13932–13939 (2006).
[DOI]
[PDF]
- 20.
First-principles, quantum-mechanical simulations of electron solvation by a water cluster.
J. M. Herbert and M. Head-Gordon.
Proc. Natl. Acad. Sci. USA 103, 14282–14287 (2006).
[DOI]
[PDF]
(Featured in the
Editor's
Choice section of Science magazine.)
- 19.
Advances in methods and algorithms in a modern quantum chemistry program package.
Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown,
A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O'Neill,
R. A. DiStasio Jr., R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley,
J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt,
R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson,
B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw,
B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden,
S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger,
A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters,
E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta,
C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock III,
W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil,
A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov,
P. M. W . Gill, and M. Head-Gordon.
Phys. Chem. Chem. Phys. 8, 3172–3191 (2006).
[DOI]
[PDF]
- 18.
Accuracy and limitations of second-order many-body perturbation
theory for predicting vertical detachment energies of solvated-electron
clusters.
J. M. Herbert and M. Head-Gordon.
Phys. Chem. Chem. Phys. 8, 68–78 (2006).
[DOI]
[PDF]
[Supp. Info.]
- 17.
Stabilization and rovibronic spectra of the T-shaped and linear
conformers of the ground state of a weakly bound rare
gas–homonuclear dihalogen complex:
He⋅⋅⋅Br2.
D. S. Boucher, D. B. Strasfeld, R. A. Loomis, J. M. Herbert, S. E. Ray, and A. B. McCoy,
J. Chem. Phys. 123, 104312:1–14 (2005).
[DOI]
[PDF]
- 16.
Accelerated, energy-conserving Born–Oppenheimer molecular dynamics
via Fock matrix extrapolation.
J. M. Herbert and M. Head-Gordon.
Phys. Chem. Chem. Phys. 7, 3269–3275 (2005).
(Selected by PCCP as a
"Hot Article".)
[DOI]
[PDF]
- 15.
Calculation of electron detachment energies for water cluster anions:
An appraisal of electronic structure methods, with application to
(H2O)20– and
(H2O)24–.
J. M. Herbert and M. Head-Gordon.
J. Phys. Chem. A 109, 5217–5229 (2005).
[DOI]
[PDF]
- 14.
Response to "Comment on 'Curvy-steps approach to constraint-free extended-Lagrangian
ab initio molecular dynamics, using atom-centered basis functions: Convergence toward
Born–Oppenheimer trajectories'" [J. Chem. Phys. 123, 027101 (2005)].
J. M. Herbert and M. Head-Gordon.
J. Chem. Phys. 123, 027102:1–2 (2005).
[DOI]
[PDF]
- 13.
Curvy-steps approach to constraint-free extended-Lagrangian
ab initio molecular dynamics using atom-centered basis
functions: Convergence toward Born–Oppenheimer trajectories.
J. M. Herbert and M. Head-Gordon.
J. Chem. Phys. 121, 11542:1–15 (2004).
[DOI]
[PDF]
- 12.
Unimolecular rearrangement of trans-FONO to FNO2.
A possible model system for atmospheric nitrate formation.
G. B. Ellison, J. M. Herbert, A. B. McCoy, J. F. Stanton, and P. G. Szalay.
J. Phys. Chem. A (Letter) 108, 7639–7642 (2004).
[DOI]
[PDF]
- 11.
Self-interaction in natural orbital functional theory.
J. M. Herbert and J. E. Harriman.
Chem. Phys. Lett. 382, 142–149 (2003).
[DOI]
[PDF]
- 10.
N-representability and variational stability in natural
orbital functional theory.
J. M. Herbert and J. E. Harriman.
J. Chem. Phys. 118, 10835–10846 (2003).
[DOI]
[PDF]
Last modified 21 April, 2025.
Proudly powered by Words. By which we mean, hand-written HTML.
This page best viewed
with a browser